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1 Introduction

The main goal of the convex optimization is to solve a minimization problem :

minimize
x∈Rn

f(x)

where the function f is a convex function. Sometimes, we can set some constraints on
the problem :

minimize
x∈Rn

f(x)

subject to x ∈ C

where C is a nonempty closed convex set.

1.1 Gradient Descent Method

Before we start, let’s look into a gradient descent method, a famous method for
minimization problem, to get an insight about steps of convex optimization.

The gradient descent method solves the problem

minimize
x∈Rn

f(x)

where the function f is a differentiable convex function. Such problem is equivalent to

find
x

0 = ∇f(x) ⇔ find
x

x = (𝕀− α∇f(x))x .

Thus, the minimization problem is transformed to a problem of finding fixed point of
an operator 𝕀− α∇f(x). The gradient descent method takes form of

xk+1 = (𝕀− α∇f)xk.

With a suitable stepsize α, an operator 𝕀− α∇f becomes a L-Lipschitz mapping with
L < 1. With the help of the Fixed Point Theorem, the iteration converges as xk → x∗,
where x∗ is one of the fixed points of an operator 𝕀− α∇f . Thus, f(xk) converges to
the minimum value of f .
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2 Convex Functions

2.1 Convexity

Definition 2.1 (Convex function). A function f(x) is called convex if it satisfies
following three conditions.

• dom f , the domain of f , is a convex set.
• f is a function to R, i.e. range f ⊂ R.
• f satisfies the Jensen’s Inequality :

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀θ ∈ [0, 1].

Additionally, a function f is called concave if −f is convex. To keep the notations
simple, we will consider the value of f(x) when x /∈ dom f as ∞, where a < ∞ for all
a ∈ R. The Jensen’s Inequality still holds with such extra assumption.

Here’s a list of basic convex function examples.

• An affine function f(x) = aTx+ b : Rn → R.
• Exponential function f(x) = eax : R → R.
• Powers of absolute f(x) = |x|p : R → R, when p ≥ 1.
• Powers f(x) = xp : R++ → R, when p ≥ 1 or p ≤ 0.
• Negative logarithm f(x) = log x : R++ → R.
• Negative entropy f(x) = x log x : R++ → R.
• Norms f(x) = ∥x∥p : Rn → R, with p ∈ [1,∞].
• Quadratic function f(x) = xTPx : Rn → R, when P ⪰ 0.

One can also prove that the given function is convex using following theorems.
Theorem 2.2. For a given function f : Rn → R, f is convex if and only if gx,v is
convex for all x, v ∈ Rn. The function gx,v : R → R is defined as

gx,v(t) = f(x+ tv).

This theorem proves that the following example is convex.
Remark 2.3. A function on square matrix X defined as

log det(x)

is concave function.
Theorem 2.4 (First order condition). When a given function f : Rn → R is
differentiable on dom f , f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Rn.

Theorem 2.5 (Second order condition). When a given function f : Rn → R is twice
differentiable on dom f , f is convex if and only if

∇2f(x) ⪰ 0, ∀x ∈ Rn.
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2.2 Convexity preserving Operations

In this subsection, we review some operations that preserves convexity.
Theorem 2.6 (Convexity preserving Operations). When the functions f(x), fi(x)
and f(x, y) are convex functions of x for all i = 1, 2, · · · and y, then the all of the
following functions are also convex.

• Nonnegative weighted sum :

∑
i

wifi(x),

∫
w(y)f(x, y)dy,

when wi, w(y) ≥ 0 for all i = 1, 2, · · · and y.
• Pointwise Maximum :

max
i

f1(x), f2(x), · · · , fm(x), sup
y

f(x, y).

• Composition to Affine function :

f(Ax+ b)

• Minimization : Further assume that f(x, y) is convex in (x, y). Then,

inf
y∈C

f(x, y)

is convex for convex set C.
• Perspective function : Define a function g(t, x) as

g(t, x) = tf(x/t), dom g = {(t, x) : x/t ∈ dom f, t > 0}.

Then, g(t, x) is convex if and if only when f(x) is convex.

When the function is defined as a composition of convex and concave functions,
here’s the result on its convexity.
Theorem 2.7. Define a function f of the form

f(x) = h(g1(x), g2(x), · · · , gm(x))

with h nondecreasing on each elements, then

• f is convex if all gi and h are convex.
• f is concave if all gi and h are concave.

Using convexity preserving operation, we can prove that the following functions
are convex.

• Log sum exponential : f(x) = log
∑

i e
xi : Rn → R.

• Quadratic over linear : f(x, y) = x2/y : R2 → R.

5



• Spectral : f(X) =
[
λmax(X

TX)
]1/2

: Rm×n → R.

But, the most important convex function is the conjugate function of f . When
the function f , which doesn’t have to be a convex function, its conjugate function is
defined as following.
Corollary 2.8 (Conjugate function). For a function f , its conjugate function f∗ is
defined as :

f∗(y) = sup
x

{
xT y − f(x)

}
.

Regardless of the convexity of f , f∗(y) is always convex. Furthermore, we have the
inequality (called Fenchel’s Inequality) :

f(x) + f∗(y) ≥ xT y.

2.3 CCP Functions

In this subsection, we handle more specific class of functions, called CCP functions.
CCP stands for Convex, Closed, Proper function. Before defining CCP function, let’s
define an epigraph of function.
Definition 2.9 (Epigraph). An epigraph of a given function f(x) is defined as

epi f = {(x, t) : x ∈ dom f, f(x) ≤ t} .

An epigraph is one way of expressing a single-valued function as a set. Note that a
convexity of a function coincides with a convexity of the epigraph.
Theorem 2.10. A single-valued function f is convex if and if only when the epigraph
of f is a convex set.

The theorem above is a direct consequence of the Jensen’s Inequality.
Now we define a closed function and proper function.

Definition 2.11. A function f is called closed when its epigraph epi f is a closed set.
A function f is called closed when the f(x) > −∞ for all x and there exists some x
that f(x) < ∞. In other words, a function f is proper if epi f is nonempty set without
any vertical lines.

Since we have all the definition of convex, closed, proper, let’s define a new class of
functions, CCP.
Definition 2.12 (CCP functions). A single-valued function f is called CCP, if it is
convex, closed, and proper function. Equivalently, a function f is CCP if and if only
when epi f is convex, closed, nonempty set without any vertical lines included.
Theorem 2.13. When a function f is CCP, then the conjugate of the conjugate f is
identical to f .

f = f∗∗

Proof. Define a pointwise supremum of affine underestimators :

f̃(x) = sup{g(x) : g is affine, g(z) ≤ f(z) for all z}.

From the closedness, we have f = f̃ , and f∗∗ = f̃ from the definition.
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An indicator function is one useful example of CCP function.
Definition 2.14 (Indicator function). The indicator function δC of a nonempty closed
convex set C is defined as

δC(x) =

{
0 x ∈ C

∞ x /∈ C.

With the help of the indicator function, the convex optimization problem with
constraints can be written as a simple convex optimization problem without constraints

minimize
x∈Rn

f(x) + δC(x) .

Before moving on, take in mind that minimization problem can also written using
argmin as

argmin f,

if the focus is on the minimizing solution. The arguement minimum of the function is
defined as

argmin f = {x : f(x) = inf f}
When the target function f is CCP, it is known that argmin f is a closed, convex set.

2.4 Strong convexity and Smoothness

Definition 2.15 (Strong convexity and Smoothness). A CCP function f is called

• µ-strongly convex if f(x)− µ
2 ∥x∥

2 is convex.
• L-smooth if f(x)− L

2 ∥x∥
2 is concave.

Note that when f is twice continuously differentiable, µ-strongly convex is equivalent
to ∇2f ⪰ µI and L-smooth is equivalent to ∇2f ⪯ LI.

2.5 Convex duality

So, how is conjugate of the function useful in convex optimization? In this subsection
we will cover about dual problem using the conjugate function. First, let’s start with
convex-concave function and saddle point problem.
Definition 2.16 (Convex-concave function). A function L(x, u) : Rn×Rm → R∪{±∞}
is called convex-concave function if it satisfies :

• L(·, u) is a convex function of x, for each u,
• L(x, ·) is a concave function of u, for each x.

The point (x∗, u∗) is called a saddle point if it satisfies :

L(x∗, u) ≤ L(x∗, u∗) ≤ L(x, u∗), ∀x ∈ Rn,∀u ∈ Rm.

A convex-concave function induces primal-dual problem. In the end, we aim to
make our original convex problem as a primal problem, and let dual problem to help
finding the solution.
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Definition 2.17 (Primal-Dual problem and Dualities). When a convex-concave
function L(x, u) : Rn × Rm → R ∪ {±∞} is given, the primal problem is

minimize
x

sup
u

L(x, u) , p∗ = inf
x

sup
u

L(x, u),

and the dual problem is

maximize
u

inf
x

L(x, u) , d∗ = sup
u

inf
x

L(x, u).

Note that the weak duality (d∗ ≤ p∗) always holds, while the strong duality (d∗ = p∗)
does not. We say total duality holds when the primal and dual solutions exist with
the strong duality. The total duality holds if and if only when the saddle point of the
convex-concave function exists.
Example 2.18 (Fenchel-Rockafeller Dual). When a convex function f, g and a linear
map A is given, consider a Lagrange function L(x, u) :

L(x, u) = f(x) + ⟨u,Ax⟩ − g∗(u).

The primal problem is
minimize

x
f(x) + g(Ax) ,

and the dual problem is

maximize
u

− f∗(−ATu)− g∗(u) .

Furthermore, if Adom f ∩ int dom g ̸= ∅, then the strong duality holds.
Remark 2.19. As mentioned in the previous section, an optimization problem with
constraints can be rewritten as a optimization problem of the sum of two functions :

minimize
x∈Rn

f(x) + δC(x) .

Thus, it is quite straightforward that convex optimization problem with constraints takes
a form of primal problem of some convex-concave function. Usually, such convex-concave
function is called Lagrange function.

Now the question is the reason why such dual problem is important. The dual prob-
lem is helpful on development of the optimizer solver. The idea is to solve optimization
problem on both primal and dual variables. While the details may vary on the specific
solvers, the key idea is :

xk+1 = argmin
x

L(x, uk)

uk+1 = argmin
u

−L(xk+1, u).
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Note that for the fixed uk, a minimization problem of L(x, uk) does not have any
constraints, which is much easier to handle. On the other hand, the effect of constraints
is handled in the dual variable, as a form of projection functions. By splitting target
function optimization and constraints of the problem, we aim to find a saddle point,
which will lead to the solution of the original optimization problem. The questions we
will handle in the future sections will be

1. Methods - For each types of problem, how is the iterative algorithm formulated?
2. Convergence conditions - Does the method converges to the solution? In which

condition is the algorithm guaranteed to converge?.

In the next two sections, we will cover the basic knowledge on each questions. We
will first handle about operators and subgradient to gather the tools to develop various
methods. Then, we will cover about fixed point iteration, a key to guaranteeing the
convergence.
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3 Operators

3.1 Set-Valued Operators

A set-valued operator is a generalized form of function. It allows the image of a value
to be a set, instead of single valued outcome.
Definition 3.1 (Set-Valued Operators). A set-valued operator from Rn to Rn is
written as

𝕋 : Rn ⇒ Rn, 𝕋x ⊂ Rn.

For the remark, when 𝕋x for each x is always singleton or empty, it is what we called
a function.

Now let’s define some sets related to the operator.

• Domain : dom𝕋 = {x : 𝕋x ̸= ∅}.
• Image of C : ∪x∈C𝕋x.
• Range : range𝕋 = ∪x∈Rn𝕋x.
• Graph : Gra𝕋 = {(x, u) : u ∈ 𝕋x} ⊂ Rn × Rn. We often say 𝕋 as Gra𝕋.
• Zero set : Zer𝕋 = {x : 0 ∈ 𝕋x}

Furthermore, let’s define other useful operators.

• Composition : 𝕋𝕊x = 𝕋(𝕊x), 𝕋𝕊 = {(x, z) : ∃y, s.t.(x, y) ∈ 𝕊, (y, z) ∈ 𝕋}.
• Operator sum : (𝕋+ 𝕊)x = {t+ s : t ∈ 𝕋x, s ∈ 𝕊x}.
• Inverse : 𝕋−1 = {(y, x) : (x, y) ∈ 𝕋}. Note that Zer𝕋 = 𝕋−1(0).
• Identity Operator : 𝕀 = {(x, x) : x ∈ Rn}. Note that 𝕋−1𝕋 = 𝕀 if 𝕋−1 is single valued.
• Zero Operator : 0 = {(x, 0) : x ∈ Rn}.

3.2 Subgradient

From calculus, we have already defined a gradient of a differentiable function. Here, we
aim to generalize gradient to apply on the convex function regardless of differentiability.
Recall that from the first order condition,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , ∀x, y ∈ Rn.

Furthermore, for each x, ∇f(x) is the only g that satisfies

f(y) ≥ f(x) + ⟨g, y − x⟩ , ∀y ∈ Rn.

Now, let’s generalize the gradient.
Definition 3.2 (Subgradient). When f is a convex function, its subgradient at x is

∂f(x) = {g : f(y) ≥ f(x) + ⟨g, y − x⟩ ,∀y ∈ Rn}.

Note that ∂f(x) is a closed convex set. A function f is differentiable at x if and if only
when ∂f(x) is a singleton. We call a function f is subdifferentiable at x if

∂f(x) ̸= ∅.
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When the function f is CCP, then{
∂f(x) = ∅ x /∈ dom f

∂f(x) ̸= ∅ x ∈ ri (dom f).

The notation ri refers to a relative interior of the set, which is a interior point of a
given set when the affine hull of the set is chosen as the underlying space.

The notion of subgradient is important since the optimization problem can be
transformed to a problem of finding zero.

x∗ ∈ argmin
x

f(x) ⇔ 0 ∈ ∂f(x∗)

Theorem 3.3 (Subgradient Identities). When f, g are CCP functions,

• ∂αf = α∂f if α > 0.
• g(x) = f(Ax) ⇒ ∂g(x) ⊇ AT∂f(Ax). Equality holds if rangeA ∩ ri (dom f) ̸= ∅.
• ∂(f + g) ⊇ ∂f + ∂g. Equality holds if dom f ∩ int dom g ̸= ∅.
• Fenchel’s identity : (∂f)−1 = ∂f∗.

Proof of Fenchel’s identity.

u ∈ ∂f(x) ⇔ 0 ∈ ∂f(x)− u

⇔ x ∈ argmin
z

f(z)− uT z

⇔ −f(x) + uTx = f∗(u)

⇔ −f∗∗(x) + xTu = f∗(u)

⇔ x ∈ ∂f∗(u)

One of the consequence of the Fenchel’s identity is a relation between strong
convexity and smoothness.
Corollary 3.4. When f CCP, f is µ-strongly convex if and if only f∗ is (1/µ)-smooth.

3.3 Monotone Operators

A monotone operator extends the notion of monotone function to a Hilbert space. The
monotonicity of an operator is heavily related to a convexity. Such relation allows the
optimization problem to be rewritten as an inclusion problem of monotone operator.
But first, let’s go through definitions.
Definition 3.5 (Monotone operator). An operator 𝕋 is called monotone if it satisfies

⟨u− v, x− y⟩ ≥ 0, ∀(x, u), (y, v) ∈ 𝕋.

Furthermore, a monotone operator 𝕋 is called maximal or maximally monotone if
there are no such monotone operator 𝕊 such that satisfies 𝕋 ⊊ 𝕊.

11



Theorem 3.6. When f is a convex, proper function, then ∂f is a monotone operator.
Furthermore, if f is CCP, then ∂f is a maximally monotone operator.

Now let’s define strongly monotone operators. The definition only modifies 0 of the
right hand side.
Definition 3.7 (Strongly monotone operator). An operator 𝕋 is

• µ-strongly monotone or µ-coersive with µ > 0 if

⟨u− v, x− y⟩ ≥ µ∥x− y∥2, ∀(x, u), (y, v) ∈ 𝕋.

• β-inverse strongly monotone or β-cocoersive with β > 0 if

⟨u− v, x− y⟩ ≥ β∥u− v∥2, ∀(x, u), (y, v) ∈ 𝕋.

Note that 𝕋 is β-cocoersive if and if only when 𝕋−1 is β-strongly monotone. Also, if
𝕋 is β-cocoersive, then 𝕋 is 1/β-Lipschitz, thus single valued.
Furthermore, an operator 𝕋 is called maximal µ-strongly monotone if there are
no such µ-strongly monotone operator 𝕊 such that satisfies 𝕋 ⊊ 𝕊. Maximal β-
cocoersive is also defined similarly. 𝕋 is maximal β-cocoersive if and if only when
𝕋−1 is maximal β-strongly monotone.

Theorem 3.8. When a function f is CCP,

• f is µ-strongly convex if and if only when ∂f is µ-strongly monotone.
• f if L-smooth if and if only when ∂f is 1/L-cocoersive.

We now define a monotone inclusion problem for a monotone operator 𝔸 :

find
x

0 ∈ 𝔸x .

When 𝔸 = ∂f , it solves the convex optimization problem.

3.4 Non-expansive operators

Definition 3.9 (L-Lipschitz). An operator 𝕋 is L-Lipschitz if

∥u− v∥ ≤ L∥x− y∥, ∀(x, u), (y, v) ∈ 𝕋.

Definition 3.10 (Non-expansive and θ-averaged). An operator 𝕋 is non-expansive
if it is 1-Lipschitz. Note that Lipschitz operator is always single valued. Thus, 𝕋 is
non-expansive if

∥𝕋x− 𝕋y∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.
An operator 𝕋 is contraction if it is L-Lipschitz with L < 1 :

∃L < 1 s.t. ∥𝕋x− 𝕋y∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

An operator 𝕋 is θ-averaged for θ ∈ (0, 1) if there exists some non-expansive ℂ such
that :

𝕋 = (1− θ)𝕀+ θℂ.
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3.5 Resolvents

In this subsection, we aim to build an averaged operator based on the given monotone
operator.
Definition 3.11 (Resolvent operator). A resolvent operator of an operator 𝔸 is

𝕁𝔸 = (𝕀+𝔸)−1.

A reflection operator of an operator 𝔸 is

ℝ𝔸 = 2𝕁𝔸 − 𝕀.

Example 3.12 (Projection and indicator function). A subgradient of the indicator
function is called Normal cone operator :

∂δC(x) = ℕC(x) =

{
∅ x /∈ C

{y : ⟨y, z − x⟩ ≤ 0,∀z ∈ C} x ∈ C.

Note that ℕC = αℕC for any α > 0. The resolvent of the normal cone operator is

𝕁α∂δC = 𝕁ℕC
= ΠC ,

where ΠC is a projection to a closed, convex set C.
Theorem 3.13 (Averagedness of Resolvent). When 𝔸 is maximal monotone, ℝ𝔸 is
nonexpansive with domℝ𝔸 = Rn, and 𝕁𝔸 is (1/2)-averaged with dom 𝕁𝔸 = Rn.

Proof. For the nonexpansiveness, assume (x, u), (y, v) ∈ 𝕁𝔸. Then,

x ∈ u+𝔸u, y ∈ v +𝔸v.

By monotonicity,
⟨(x− u)− (y − v), u− v⟩ ≥ 0.

13



Hence,
∥(2u− x)− (2v − y)∥2 ≤ ∥x− y∥2.

Thus, ℝ𝔸 is nonexpansive and 𝕁𝔸 is (1/2)-averaged. For the domain to be Rn, it comes
from Minty’s surjectivity theorem.

Note that domain being Rn is important since we will use the resolvent as an
operator in fixed point iteration.
Remark 3.14. The zero set of a monotone operator Zer𝔸 is identical to the fixed point
set of the resolvent Fix 𝕁𝔸.

0 ∈ 𝔸x ⇔ x ∈ x+𝔸x ⇔ 𝕁𝔸x = x.

Also, Zer𝔸 is closed, convex set if 𝔸 is maximal monotone.
Thus, the convex optimization problem is equivalent to the fixed point theorem :

minimize
x

f(x) ⇔ find
x

x ∈ Fix 𝕁∂f .

Furthermore, 𝕁∂f is (1/2)-averaged if f is CCP. This is the key stepstone of the reason
the fixed point iteration solves the problem.
Theorem 3.15 (Proximal operator). When f is CCP function and α > 0,

𝕁α∂f (x) = argmin
y

{
αf(x) +

1

2
∥x− y∥2

}
.

We define this operator as Proxαf (y). When Proxαf (y) is efficient to calculate, we call
f proximable.
Theorem 3.16 (Inverse resolvant identity). When 𝔸 is maximally monotone,

𝕁𝔸 + 𝕁𝔸−1 = 𝕀.

As a corollary, when f is CCP,

Proxf + Proxf∗ = 𝕀.
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4 Scaled Relative Graph

4.1 Operator Class

Definition 4.1 (Operator class). A set A is called an operator class if it consists of
some operators. The operators in A need not be the operators on the same space. We
further define operations on operator class as the following.

• A+ B = {𝔸+𝔹 : 𝔸 ∈ A,𝔹 ∈ B,𝔸,𝔹 : Rn ⇒ Rn, n ∈ N}.
• AB = {𝔸𝔹 : 𝔸 ∈ A,𝔹 ∈ B,𝔸,𝔹 : Rn ⇒ Rn, n ∈ N}.
• 𝕁A = {𝕁𝔸 : 𝔸 ∈ A,𝔸 : Rn ⇒ Rn, n ∈ N}.
• ℝA = {ℝ𝔸 : 𝔸 ∈ A,𝔸 : Rn ⇒ Rn, n ∈ N}.
• A−1 = {𝔸−1 : 𝔸 ∈ A,𝔸 : Rn ⇒ Rn, n ∈ N}.
• αA = {α𝔸 : 𝔸 ∈ A,𝔸 : Rn ⇒ Rn, n ∈ N}.

Now let’s define some useful operator classes.

• LL : Class of L-Lipschitz operators, L ∈ (0,∞).
• Cβ : Class of β-cocoercive operators, β ∈ (0,∞).
• M : Class of monotone operators.
• Mµ : Class of µ-strongly monotone operators, µ ∈ (0,∞).
• Nθ : Class of θ-averaged operators, θ ∈ (0, 1). Nθ = (1− θ)𝕀+ θL1.
• ∂Fµ,L = {∂f : f ∈ Fµ,L}, 0 ≤ µ ≤ L ≤ ∞.

The set Fµ,L is a set of CCP functions such that µ-strongly convex and L-smooth.

4.2 Scaled Relative Graph

Consider values in Rn, x, y, u, v. Define a complex value z as

z, z̄ =
∥u− v∥
∥x− y∥

exp [±i∠(u− v, x− y)] .

The angle value ∠(a, b) is defined as

∠(a, b) =

{
arccos

[
⟨a,b⟩

∥a∥∥b∥

]
, a, b ̸= 0

0, otherwise.

Now let’s define scaled relative graph of an operator 𝔸.
Definition 4.2 (SRG). The scaled relative graph of an operator 𝔸 : Rn ⇒ Rn is

G(𝔸) =

{
∥u− v∥
∥x− y∥

exp [±i∠(u− v, x− y)] : (x, u), (y, v) ∈ 𝔸, x ̸= y

}
.

If 𝔸 is multi-valued, we further union the set {∞} to define G(𝔸).
Definition 4.3 (SRG of an operator class). The SRG of an operator class A is

G(A) = ∪𝔸∈AG(𝔸).
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Here’s some examples of SRG graph of operator classes

What we want to do from SRG is to tell whether a given operator is in the operator
class using the inclusion of the SRG graphs.

4.3 SRG-full classes

First let’s define SRG-full operator class.
Definition 4.4 (SRG-full class). An operator class A is called SRG-full if it satisfies

𝔸 ∈ A ⇔ G(𝔸) ⊆ G(A).

Note that ⇐ is the key condition on SRG-fullness.
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When an operator class A is SRG-full, we can prove that 𝔸 is in A by observing
the inclusion of the SRG graphs. Thus, it is essential to check which operator class is
SRG-full.
Theorem 4.5. An operator class A is SRG-full if it is defined as

A =
{
𝔸 : h

(
∥u− v∥2, ∥x− y∥2, ⟨u− v, x− y⟩

)
≤ 0, ∀(x, u), (y, v) ∈ 𝔸

}
for some non-negative homogeneous function h : R3 → R. A function h : R3 → R is
non-negative homogeneous function if

h(θa, θb, θc) = θh(a, b, c), ∀θ ≥ 0.

Proof. Assume G(𝔸) ⊆ G(A). When (xA, uA), (yA, vA) ∈ 𝔸, there exists z such that

∥z∥2 =
∥uA − vA∥2

∥xA − yA∥2
, Re z =

⟨uA − vA, xA − yA⟩
∥xA − yA∥2

.

Since z ∈ G(𝔸) ⊆ G(A), there exists some operator 𝔹 ∈ A such that

∥z∥2 =
∥uB − vB∥2

∥xB − yB∥2
, Re z =

⟨uB − vB , xB − yB⟩
∥xB − yB∥2

is satisfied for some (xB , uB), (yB , yB) ∈ 𝔹. Since 𝔹 ∈ A, we have

h(∥uB − vB∥2 , ∥xB − yB∥2 , ⟨uB − vB , xB − yB⟩) ≤ 0.

Due to homogeneity,
h(∥z∥2, 1,Re z) ≤ 0.

Again by homogeneity,

h(∥uA − vA∥2 , ∥xA − yA∥2 , ⟨uA − vA, xA − yA⟩) ≤ 0,

concluding 𝔸 ∈ A.

As a consequence of this theorem, LL,Nθ,M,Mµ, Cβ is SRG-full operator class. On
the other hand, ∂Fµ,L is not a SRG-full operator since there’s some counterexamples :

𝔸(x, y) = (−y, x).

Theorem 4.6 (SRG-full preserving operations). Assume A,B are operator classes.
Then,

• G(A∩B) ⊇ G(A)∩G(B). If A,B are SRG-full, A∩B is SRG-full and equality holds.
• G(αA) = αG(A), α ̸= 0. If A is SRG-full, αA is SRG-full.
• G(𝕀+A) = 1 + G(A). If A is SRG-full, 𝕀+A is SRG-full.
• G(A−1) = G(A)−1. If A is SRG-full, A−1 is SRG-full.
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Example 4.7 (Convergence analysis of Gradient Descent). Consider the optimization
problem

minimize
x

f(x)

of a µ-strongly convex and L-smooth function f (0 < µ < L < ∞). The gradient
descent method

xk+1 = xk − α∇f(xk)

converges with rate

∥xk − x∗∥ ≤ max(|1− αµ|, |1− αL|)k∥x0 − x∗∥,

for α ∈ (0, 2/L).
Example 4.8 (Convergence analysis of Forward Step method-1). Consider the
monotone inclusion problem

find
x

0 ∈ 𝔸x

of a µ-strongly monotone and L-Lipschitz operator 𝔸 (0 < µ < L < ∞). The forward
step method

xk+1 = xk − α𝔸xk

converges with rate

∥xk − x∗∥ ≤ (1− 2αµ+ α2L2)k/2∥x0 − x∗∥,

for α ∈ (0, 2µ/L2).
Example 4.9 (Convergence analysis of Forward Step method-2). Consider the
monotone inclusion problem

find
x

0 ∈ 𝔸x

of a µ-strongly monotone and β-cocoersive operator 𝔸 (0 < µ < 1/β < ∞). The
forward step method

xk+1 = xk − α𝔸xk

converges with rate

∥xk − x∗∥ ≤ (1− 2αµ+ α2µ/β)k/2∥x0 − x∗∥,

for α ∈ (0, 2β).
Example 4.10 (Convergence analysis of Proximal Point method). Consider the
monotone inclusion problem

find
x

0 ∈ 𝔸x

of a maximal µ-strongly monotone operator 𝔸. The proximal point method

xk+1 = 𝕁α𝔸x
k

converges with rate

∥xk − x∗∥ ≤ (
1

1 + αµ
)k∥x0 − x∗∥,

for α > 0.
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5 Fixed Point Iteration

In this section, we cover about Fixed Point Iteration, namely FPI. The fixed point
iteration states that the repeated image via averaged mapping converges to one of the
fixed points if such exist.
Theorem 5.1 (Fixed Point Iteration). Assume 𝕋 : H → H is θ-averaged operator on
Hilbert space H with θ ∈ (0, 1), and Fix𝕋 ̸= ∅. Then, the fixed point iteration

xk+1 = 𝕋xk, k = 0, 1, 2, · · · (FPI)

with any starting point x0 converges to some fixed point :

xk → x∗, ∃x∗ ∈ Fix𝕋.

Remark 5.2. The original Banach Fixed Point Theorem does not require the existence
of Fix𝕋, since Fix𝕋 is nonempty when 𝕋 is a contraction mapping. However, the
nonemptiness of Fix𝕋 is required if we extend the result to θ-averaged since some
θ-averaged has no fixed points.

5.1 Proof of FPI

Proof of FPI. Assume 𝕋 is (1− θ)𝕀+ θℂ for some nonexpansive mapping ℂ. Then, the
FPI is

xk+1 = (1− θ)xk + θℂxk

and ℂx∗ = x∗ for all x∗ ∈ Fix𝕋. From the identity

∥(1− θ)x+ θy∥2 = (1− θ)∥x∥2 + θ∥y∥2 − θ(1− θ)∥x− y∥2,

With the nonexpansiveness of ℂ, we have

∥xk+1 − x∗∥2 = (1− θ)∥xk − x∗∥2 + θ∥ℂxk − x∗∥2 − θ(1− θ)∥ℂxk − xk∥2

≤ (1− θ)∥xk − x∗∥2 + θ∥xk − x∗∥2 − θ(1− θ)∥ℂxk − xk∥2

= ∥xk − x∗∥2 − 1− θ

θ
∥𝕋xk − xk∥2

for any x∗ ∈ Fix𝕋. Note that ∥xk − x∗∥2 and ∥𝕋xk − xk∥2 are both nonincreasing
sequence. The above inequality gives

(k + 1)∥xk+1 − xk∥2 ≤
k∑

j=0

∥𝕋xj − xj∥2 ≤ θ

1− θ
∥x0 − x∗∥2.

Minimization among x∗ gives, (since Fix𝕋 is convex, closed, nonempty set)

∥xk+1 − xk∥2 ≤ 1

k + 1

θ

1− θ
dist2(x0,Fix𝕋), xk+1 − xk → 0.
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Now let’s prove xk → x∗. From ∥xk+1 − x∗∥2 ≤ ∥x0 − x∗∥2, {xk} is a sequence in
a compact set. Thus, there exists a subsequence {xkl} such that converges xkl → x̃ for
some x̃. First, x̃ is in Fix𝕋 since 𝕋 − 𝕀 is continuous and ∥(𝕋 − 𝕀)xkl∥ decreasingly
converging to 0 gives (𝕋− 𝕀)x̃ = 0. Secondly, since we now know that x̃ ∈ Fix𝕋, we
can say that ∥xk+1 − x̃∥ ≤ ∥xk − x̃∥. Thus, from ∥xkl − x̃∥ → 0, we can conclude that
xk → x̃. As a conclusion, xk → x∗ ∈ Fix𝕋.

Remark 5.3. While the theorem covers θ-averaged mapping, general nonexpansive
mapping can be solved by FPI since the fixed point of ℂ and (1− θ)𝕀+ θℂ coincides.

5.2 Inconsistent Case of FPI

Some could question about the consequence when the existence of fixed point is not
ensured. What is the behavior when Fix𝕋 = ∅, namely called Inconsistent. Such case
was studied in the work of A.Pazy(1971), and the result is

lim
k→∞

xk

k
= −v.

where v is an infimal displacement vector of 𝕋. The definition will be discussed later.
Example 5.4. Consider an optimization problem a convex function of

f(x) = ex + x.

The gradient descent of this problem takes form of

xk+1 = xk − α(ex
k

+ 1).

Which diverges with speed near −α after long iterations.
Proposition 5.5. Consider an operator 𝕋 and 𝕊 with a relation of

𝕋 = 𝕀− θ𝕊, θ ∈ (0, 1).

Then, 𝕋 is θ-averaged operator if and only if when 𝕊 is (1/2)-cocoersive operator. Such
result also holds for θ = 1, if we consider nonexpansive mapping as θ-averaged with
θ = 1.
Example 5.6. The easy way to think of a inconsistent nonexpansive mapping is to
think of a (1/2)-cocoersive operator without any zero set. For example, a projection to
a closed convex set is 1-cocoersive. If we consider closed convex set C with 0 ̸= C, a θ
averaged operator 𝕋 = 𝕀−ΠC is a (1/2)-averaged operator. What above theorem implies
is that fixed point iteration with 𝕋 = 𝕀 − ΠC shows convergence on its normalized
iterate xk/k → −v where v is a minimal norm element of C.
Definition 5.7 (Infimal Element). An infimal element v of nonexpansive 𝕋 is defined
as the minimal norm element of the closure of the range set : range (𝕀− 𝕋). It is well
defined since the set range (𝕀− 𝕋) is a convex set when 𝕋 is nonexpansive.
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Theorem 5.8. Let 𝕋 : H → H be nonexpansive mapping. When v is an infimal
displacement vector of 𝕋 and x0, x1, x2, ... is a sequence generated by FPI on 𝕋, we
have strong convergence :

lim
k→∞

xk

k
= −v.

5.3 Proof of Pazy’s Theorem

Lemma 5.9. Let C ∈ H be a closed convex nonempty set and v be a minimal norm
element, i.e. v = ΠC0. For a sequence {uk} ⊂ C, if ∥uk∥ → ∥v∥ then

uk → v, ∥uk − v∥2 ≤ ∥uk∥2 − ∥v∥2

Proof. First, let’s prove that ∥v∥2 ≤ ⟨x, v⟩ for all x ∈ C. For any x ∈ C, a point
tx+ (1− t)v is also in C for all t ∈ [0, 1] due to C’s convexity. When we compare the
norm, since v is a minimal norm element, we have

∥v∥2 ≤ ∥tx+ (1− t)v∥2 = t2∥x∥2 + 2t(1− t) ⟨x, v⟩+ (1− t)2∥v∥2, ∀t ∈ (0, 1).

By subtracting ∥v∥2 on both sides and divide by t, we obtain

0 ≤ t∥x∥2 + 2(1− t) ⟨x, v⟩+ (t− 2)∥v∥2, ∀t ∈ (0, 1).

By taking a limit t → ∞, we can conclude that ∥v∥2 ≤ ⟨x, v⟩.
Now from this result, since uk ∈ C for all k,

∥uk − v∥2 = ∥uk∥2 − 2
〈
uk, v

〉
+ ∥v∥2 ≤ ∥uk∥2 − ∥v∥2.

Thus, if ∥uk∥ → ∥v∥ then uk → v.

Theorem 5.10. Let 𝕋 : H → H nonexpansive operator. Define d.d̃ as

d = inf{∥y∥ : y ∈ range (𝕀− 𝕋)}, d̃ = inf{∥y∥ : y ∈ conv(range (𝕀− 𝕋))},

where conv is a convex hull : conv(A) = {tx+ (1− t)y : t ∈ [0, 1], x, y ∈ A}. Then,

d̃ ≤ lim inf
k→∞

∥𝕋kx∥
k

≤ lim sup
k→∞

∥𝕋kx∥
k

≤ d

for any choice of x.

Proof. First, to prove the second inequality, consider a sequence zm such that satisfies
∥zm − 𝕋zm∥ → d. Note that such sequence exists due to the definition of d. Then,

𝕋kzm = zm +

k∑
i=1

(𝕋i − 𝕋i−1)zm, ∥𝕋kzm − 𝕋kx∥ ≤ ∥zm − x∥.
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With the help of the triangular inequality,

∥𝕋kx∥
k

≤ ∥zm∥+ ∥zm − x∥
k

+ ∥zm − 𝕋zm∥.

Now take the limit supremum to obtain the desired inequality.
For the first inequality, suppose v is the minimal norm element of the closed convex

set conv(range (𝕀− 𝕋)), i.e. ∥v∥ = d̃. The inner product of v and 𝕋kx+ kv is

〈
𝕋kx+ kv, v

〉
= ⟨x, v⟩+

k∑
i=1

〈
v − (𝕋i−1x− 𝕋ix), v

〉
.

Since 𝕋i−1x− 𝕋ix ∈ conv(range (𝕀− 𝕋)), we have
〈
v − (𝕋i−1x− 𝕋ix), v

〉
≤ 0. Thus,〈

𝕋kx+ kv, v
〉
≤ ⟨x, v⟩

and as a consequence, if ∥v∥ = d̃ ̸= 0,

∥𝕋kx∥
k

≥ −
〈
𝕋kx, v

〉
k∥v∥

≥ ∥v∥ − ⟨x, v⟩
k∥v∥

.

Take the limit to conclude the first inequality. The case of d̃ = 0 is trivial.

Remark 5.11. For the remark, when the 𝕋 is nonexpansive operator on H, range (𝕀−𝕋)
is always convex set. Thus, the above theorem gives the Pazy’s result straightforward
since d = d̃. However, the above theorem also works when 𝕋 is only nonexpansive on
elements in closed set D. In this case, range (𝕀− 𝕋) need not be convex.

proof of Pazy’s Theorem. Due to convexity of range (𝕀− 𝕋),

−𝕋kx

k
+

x

k
=

1

k

k∑
i=1

(𝕀− 𝕋)𝕋i−1x ∈ range (𝕀− 𝕋).

Since
∥∥∥−𝕋kx

k + x
k

∥∥∥→ ∥v∥, we can conclude that −𝕋kx
k → v and k → ∞.

Remark 5.12. It is further known that the difference of the iterates also converges :

xk+1 − xk → −v.

Example 5.13. The inconsistent case of FPI can be useful in measuring the mini-
mal norm or distance between two closed convex sets. For an example, consider an
optimization problem

minimize
x

f(x) + g(x) , f = δA, g = δB ,
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where A,B are closed nonempty convex sets with A ∩B = ∅. One can notice that the
problem is infeasible since the domain where the function value exists is an empty set.
However, we can still apply DRS method for convex sets. The DRS method will be
explained in the next remark. When DRS method is applied, the iteration is :

xk+1/2 = 𝕁∂g(z
k) = ΠB(z

k)

xk+1 = 𝕁∂f (2x
k+1/2 − zk) = ΠA(2x

k+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2.

Such iteration converges as

xk+1/2 → xB ∈ B, xk+1 → xA ∈ A,
zk

k
→ v = xA − xB

where ∥v∥ = dist(A,B).
The following figure depicts xk and xk+1/2 when the sets A,B are circles.
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6 Randomized Method

In practical issues, randomization technique is broadly used in the area of optimization
and machine learning. Such technique gives advantages such as faster convergence speed.
In this chapter we will cover about randomized version of FPI, namely called RC-FPI
or Randomized (block) Coordinate update Fixed Point Iteration. The simplest version
of RC-FPI by 𝕋 : Rm → Rm is a single coordinate update with uniform selection,

xk+1 = 𝕋ikx
k, (𝕋ikx)j =

{
x j ̸= ik

(𝕋x)ik j = ik,

where ik are selected with IID on uniform distribution of 1, 2, · · · ,m. Now let’s
generalize this notion on the Hilbert space.

First, let’s clarify the underlying space. The underlying space is a real Hilbert space
H, which is consisted of m real Hilbert spaces.

H = H1 ⊕H2 ⊕ . . .Hm.

An element u ∈ H can be decomposed into m blocks as

u = (u1, u2, . . . , um) , ui ∈ Hi,

and ui is called the ith block coordinates of u.
The Hilbert space H has its induced norm and inner product as

∥x∥2 =

m∑
i=1

∥xi∥2i , ⟨x, y⟩ =
m∑
i=1

⟨xi, yi⟩i,

for all x, y ∈ H, where ∥ · ∥i and ⟨·, ·⟩i are the norm and inner product of Hi and xi, yi
are ith block coordinates of x, y, respectively.

Consider a linear, bounded, self-adjoint and positive definite operator M : H → H.
The M -norm and M -inner product of H are defined as

∥x∥M =
√

⟨x,Mx⟩, ⟨x, y⟩M = ⟨x,My⟩,

which can also be a pair of norm and inner product of the space H. ∥ · ∥ and ⟨·, ·⟩ are
simply the instances of M -norm and M -inner product with M as an identity map. For
the remark, the map M can be expressed as a symmetric positive definite matrix if
H = Rn. In this case, M -inner product and M -norm are

∥x∥M =
√
xTMx, ⟨x, y⟩M = xTMy.

Define the M -variance of a random variable X with the domain H as

VarM [X] = E[∥X∥2M ]− ∥E[X]∥2M .
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Consider a θ-averaged operator 𝕋 : H → H with its corresponding (1/2)-cocoercive
operator 𝕊 = θ−1(𝕀− 𝕋) with θ ∈ (0, 1]. To clarify, we will refer to non-expansive
operators as θ-averaged operators with θ = 1. Define 𝕊i : H → H for i = 1, 2, . . . ,m as
𝕊ix = (0, . . . , 0, (𝕊x)i, 0, . . . , 0), where (𝕊x)i ∈ Hi.

We call I = (I1, I2, . . . , Im) ∈ [0, 1]
m ⊂ Rm a selection vector and use it as follows.

Define 𝕊I : H → H and 𝕋I : H → H as

𝕊I =

m∑
i=1

Ii𝕊i, 𝕋I = 𝕀− θ𝕊I .

We can think of 𝕊I as the selection of blocks based on I and 𝕋I as the update based
on the selected blocks. Throughout this paper, we assume that I is randomly sampled
from a distribution on [0, 1]

m
that satisfies the uniform expected step-size condition

EI [I] = α1 (1)

for some α ∈ (0, 1], where 1 ∈ Rm is the vector with all entries equal to 1. (Note,
I ∈ [0, 1]

m
already implies α ∈ [0, 1] so we are additionally assuming that α > 0.) The

randomized coordinate fixed-point iteration (RC-FPI) is defined as

xk+1 = 𝕋Ikxk, k = 0, 1, 2, . . . , (RC-FPI)

where I0, I1, . . . is sampled IID and x0 ∈ H is a starting point.
(RC-FPI) is a randomized variant of (FPI). The uniform expected step-size condi-

tion (1) allows us to view one step of (RC-FPI) to be corresponding to a step of (FPI)
with �̄� : H → H defined as

�̄�x = EI [𝕋Ix] , ∀x ∈ H.

Equivalently, �̄� = 𝕀− αθ𝕊. As a consequence, �̄� is also a αθ-averaged operator.
Before moving on, let’s define β value embedded by the probability distribution of

the selection vector I. For any u ∈ H and selection vector I, define

uI =

m∑
i=1

Ii︸︷︷︸
∈R

(0, . . . , 0, ui, 0, . . . , 0)︸ ︷︷ ︸
∈H

,

where ui ∈ Hi for i = 1, . . . ,m. If I satisfies the uniform expected step-size condition
(1) with α ∈ (0, 1], then clearly EI [uI ] = αu. Let β > 0 be a coefficient such that

EI

[
∥uI∥2M

]
≤ β ∥u∥2M , ∀u ∈ H. (2)

For the remark, β is necessarily greater or equal to α2.
Lemma 6.1. Consider a Hilbert space H with its norm ∥ · ∥. If I satisfies the uniform
expected step-size condition (1) with α ∈ (0, 1], then β = α satisfies (2).
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6.1 Convergence of RC-FPI

Randomization may accelerate, but it is not useful until the convergence is guaranteed.
Thankfully, with (RC-FPI) also converges to the fixed point even with probability 1.
Theorem 6.2 (Convergence of RC-FPI). Assume 𝕋 : H → H as a θ-averaged operator
on separable Hilbert space H with θ ∈ (0, 1) with Fix𝕋 ̸= ∅. When α > θβ, (RC-FPI)
by 𝕋 with condition (1) converges to one of the fixed point with probability 1 :

xk a.s.→ x∗,

for some choice of x∗ ∈ Fix𝕋. Notation
a.s.→ denotes a strong convergence of Hilbert

space with probability of 1.
Remark 6.3. Results in (RC-FPI) is is fairly non-trivial. For the remark, a randomized
operator 𝕋I may not be non-expansive even when 𝕋 is. For an example, consider a
rotation operator.
Remark 6.4. Note that in ∥ · ∥, θβ < α is satisfied with the choice of β = α.

Short proof. Take a conditional expectation at step k on
∥∥xk+1 − x∗

∥∥2
M

for x∗ ∈ Fix𝕋.

E
[∥∥xk+1 − x∗∥∥2

M

∣∣∣Fk

]
=
∥∥xk − x∗∥∥2

M
− 2θ

〈
E
[
𝕊Ikxk

∣∣Fk

]
, xk − x∗〉

M
+ θ2E

[∥∥𝕊Ikxk
∥∥2
M

∣∣∣Fk

]
=
∥∥xk − x∗∥∥2

M
− 2θα

〈
𝕊xk − 𝕊x∗, xk − x∗〉

M
+ θ2β

∥∥𝕊xk
∥∥2
M

≤
∥∥xk − x∗∥∥2

M
− θ(α− θβ)

∥∥𝕊xk
∥∥2
M

.

By supermartingale convergence theorem, for each x∗ ∈ Fix𝕋,

∞∑
0

∥∥𝕊xk
∥∥2
M

< ∞, lim
k→∞

∥∥xk − x∗∥∥2
M

exists

with probability 1. Since H is separable, we can say with probability 1 that∥∥𝕊xk
∥∥
M

→ 0, lim
k→∞

∥∥xk − x∗∥∥2
M

exists

for all x∗ ∈ Fix𝕋. Also note that E
∥∥xk − x∗

∥∥2
M

is nonincreasing sequence. With
the same arguments from the proof of FPI with the notion of with probability 1
appended, we can conclude the proof. In detail, with probability 1, sequence xk

is bounded for a sufficiently large k and thus has a converging subsequence. Such

subsequence converges to the value in Fix𝕋 since 𝕊xk → 0. Since lim
∥∥xk − x̃

∥∥2
M

exists

and lim
∥∥xkl − x̃

∥∥2
M

= 0, we can conclude that xk → x̃ ∈ Fix𝕋.

Remark 6.5. Note that the separability of H (i.e. H contains countable, dense subset)
is required. It is important since x∗ that bounds the sequence and x̃, the convergence
value of the subsequence xkl may differ.
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6.2 RC-FPI admits faster convergence

At glance, the form of (RC-FPI) doesn’t seem faster compared to the original FPI. It
is true that (RC-FPI) is not fast for all types of problems. (RC-FPI) takes advantages
when the problem, or the operator, is coordinate friendly.
Definition 6.6. An operator is called Coordinate friendly if it satisfies

F [x 7→ (𝕋x)i] ≤
C

m
F [x 7→ 𝕋x] , ∀i = 1, 2, · · · ,m

for some not too large C > 0. F [x 7→ z] denotes computational cost of calculating z
from x. Many optimization problems of the form

minimize
x1,x2,··· ,xm

m∑
i=1

fi(xi)

can be solved by coordinate friendly operator.
Example 6.7 (LASSO). A famous example is the LASSO optimization. The LASSO
problem has a form of

minimize
x

L(x) , L(x) =
1

2
∥Xx− y∥22 + λ∥x∥1.

We can easily check that the gradient of the L(x) can be computed in each index
independently.
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7 Inconsistent case of RC-FPI

In this section, I introduce my work on the behavior of (RC-FPI) in the general case,
including when the fixed point doesn’t exist. In this seminar, the key concepts of the
proofs are provided instead of the full proof since it is quite technical. The full proof
can be checked in the paper arXiv:2305.12211.

Following are key results. First, (RC-FPI) also obtains similar behavior of the Pazy’s
theorem. The normalized iterate xk/k converges to −αv both in L2 and almost surely.

xk

k

L2

→ −αv,
xk

k

a.s.→ −αv.

v is the infimal displacement vector of 𝕋, or equivalently αv is the infimal displacement
vector of �̄�.

Second, it is possible to show that

lim sup
k→∞

kVarM

[
xk

k

]
≤ (β − α2) ∥v∥2M ,

an analogous result of central limit theorem.
Before moving on to the main theorems and proofs, here’s the one-step inequality

which will be the key inequality of each proofs.
Lemma 7.1. Let 𝕋 : H → H be θ-averaged respect to ∥·∥M with θ ∈ (0, 1]. Let I be
a random selection vector with distribution satisfying the uniform expected step-size
condition (1) with α ∈ (0, 1]. Assume (2) holds with some β. For any x, z ∈ H,

E
I

[
∥𝕋Ix− �̄�z∥2M

]
≤ ∥x− z∥2M + θ2

(
β − α2

)
∥𝕊x∥2M − αθ (1− αθ) ∥𝕊x− 𝕊z∥2M .

Proof. First, substitute 𝕋I = 𝕀− θ𝕊I and �̄� = 𝕀− αθ𝕊 at EI

[
∥𝕋Ix− �̄�z∥2M

]
.

E
[
∥𝕋Ix− �̄�z∥2M

]
= E

[
∥x− z − θ (𝕊Ix− α𝕊z)∥2M

]
= ∥x− z∥2M + θ2E

[
∥𝕊Ix− α𝕊z∥2M

]
− 2αθ ⟨x− z,𝕊x− 𝕊z⟩M

≤ ∥x− z∥2M + θ2E
[
∥𝕊Ix− α𝕊z∥2M

]
− αθ ∥𝕊x− 𝕊z∥2M .

The (1/2)-cocoercive property of the operator 𝕊 is used to obtain the last inequality.
Since E[𝕊Ix] = α𝕊x, the second term can be bounded as

E
[
∥𝕊Ix− α𝕊z∥2M

]
= E

[
∥(𝕊Ix− α𝕊x) + α (𝕊x− 𝕊z)∥2M

]
= VarM [𝕊Ix] + α2 ∥𝕊x− 𝕊z∥2M
≤
(
β − α2

)
∥𝕊x∥2M + α2 ∥𝕊x− 𝕊z∥2M ,

and we can get the desired inequality.
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As one can see from this lemma, key idea of the main theorem’s proofs is comparing
the random sequence by (RC-FPI) with the fixed point iteration by �̄�. Define a
deterministic sequence z0, z1, z2, . . . as

zk+1 = �̄�zk, k = 0, 1, 2, . . . . (FPI with �̄�)

Throughout this section, xk will usually denote a random sequence by (RC-FPI) via 𝕋

and zk will be referred as a sequence (FPI with �̄�).

7.1 L2 convergence of the normalized iterate

Theorem 7.2. Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥-norm with θ ∈ (0, 1].
Assume I0, I1, . . . is sampled IID from a distribution satisfying the uniform expected
step-size condition (1) with α ∈ (0, 1]. Let x0, x1, x2, . . . be the iterates of (RC-FPI).
Then

xk

k

L2

→ −αv

as k → ∞, where v is the infimal displacement vector of 𝕋.

Proof. From the one-step inequality Lemma 7.1, by taking full expectation

E
[∥∥xk+1 − zk+1

∥∥2
M

]
− E

[∥∥xk − zk
∥∥2
M

]
≤ θ2

(
β − α2

)
E[∥𝕊x∥2M ]− αθ (1− αθ)E[∥𝕊x− 𝕊z∥2M ]

= −θ (α− βθ)E[∥𝕊x∥2M ] + 2αθ (1− αθ) ⟨E[𝕊x],𝕊z⟩M − αθ (1− αθ) ∥𝕊z∥2M
≤ −θ−1α (1− αθ) ∥v∥2M + 2αθ (1− αθ) ∥E[𝕊x]∥M ∥𝕊z∥M ,

where the last inequality is from v being infimal displacement vector, which implies
∥v∥M ≤ ∥θ𝕊x∥M , ∥θ𝕊z∥M . If we can bound ∥E[𝕊x]∥M and ∥𝕊z∥M (which is possible
from following two lemmas), we can conclude the proof since

E
[∥∥xk+1 − zk+1

∥∥2
M

]
≤ E

[∥∥xk − zk
∥∥2
M

]
+A ≤ kA+ C,

and dividing each side with (k + 1)2 gives L2 distance converging to 0.

Lemma 7.3. 𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and choose any starting point
z0 ∈ H for (FPI with �̄�). When 𝕊 = θ−1(𝕀− 𝕋),∥∥𝕊zk∥∥

M
≤
∥∥𝕊zk−1

∥∥
M

≤ · · · ≤
∥∥𝕊z0∥∥

M
.

Proof of Lemma 7.3. From 𝕊 being (1/2)-cocoercive operator, we can check that

θ ⟨𝕊𝕋z − 𝕊z,−𝕊z − 𝕊𝕋z⟩M ≥ (1− θ) ∥𝕊𝕋z − 𝕊z∥2M ≥ 0,

which is equivalent to
∥𝕊𝕋z∥2M ≤ ∥𝕊z∥2M .
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Lemma 7.4. 𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and choose any starting point
x0 ∈ H for (RC-FPI). When 𝕊 = θ−1(𝕀− 𝕋),∥∥E [𝕊𝕋Ik . . .𝕋I0x0

]∥∥
M

≤ β1/2α−1
∥∥𝕊x0

∥∥
M

holds if I0, , I1, . . . , Ik follow IID distribution with the condition (1) with α ∈ (0, 1]
and (2) holds with some β that β ≤ α/θ.

Proof of Lemma 7.4. We can easily check that from (1/2)-cocoersivity

E
[
∥𝕋IX − 𝕋IY ∥2M

]
≤ E

[
∥X − Y ∥2M

]
.

First apply above inequality repeatedly, then apply Jensen’s Inequality on the LHS, and
finally set up X,Y as X = 𝕋I0x0 and Y = x0. Then as a result, we have an inequality∥∥E [𝕋Ik . . .𝕋I1𝕋I0x0 − 𝕋Ik . . .𝕋I1x0

]∥∥2
M

≤ E
[∥∥θ𝕊I0x0

∥∥2
M

]
≤ β

∥∥θ𝕊x0
∥∥2
M

.

Since I0, I1, . . . , In are IID, the following equivalence holds and ends the proof.

E
[
𝕋Ik . . .𝕋I1x0

]
= E

[
𝕋Ik−1 . . .𝕋I0x0

]
.

7.2 Almost sure convergence of normalized iterate

Theorem 7.5. Under the conditions of Theorem 7.2 with θ ∈ (0, 1), xk/k is strongly
convergent to −αv in probability 1. In other words,

xk

k

a.s.→ −αv

as k → ∞.

Proof. To use the Robbins-Siegmund quasi-martingale theorem Lemma 7.6, we cannot
take full expectation to bound the extra terms in Lemma 7.1. Here, we provide alternate
way to bound the last two terms in Lemma 7.1.

− αθ (1− αθ) ∥𝕊x− 𝕊z∥2M + θ2
(
β − α2

)
∥𝕊x∥2M

= −θ (α− βθ)

∥∥∥∥𝕊x− α− α2θ

α− βθ
𝕊z

∥∥∥∥2
M

+
αθ2(1− αθ)(β − α2)

α− βθ︸ ︷︷ ︸
=:B≥0

∥𝕊z∥2M .

From Lemma 7.1,

EIk

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

| Fk−1

]
≤
∥∥∥∥ xk−1

k − 1
− zk−1

k − 1

∥∥∥∥2
M

+
B

k2
∥∥𝕊zk−1

∥∥2
M

,
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where x0, x1, x2, . . . is a random sequence generated by (RC-FPI) with 𝕋, z0, z1, z2, . . .
is a sequence generated by (FPI with �̄�) and starting point z0 = x0, and Fk is a

filtration consisting of information up to nth iteration. Recall that
∥∥𝕊zk−1

∥∥2
M

≤∥∥𝕊z0∥∥2
M
. Thus, from the quasi-martingale theorem, the random sequence

∥∥∥xk

k − zk

k

∥∥∥2
M

converges almost surely to some random variable. Then, by Fatou’s lemma and the L2

convergence of Theorem 7.2, we have

E

[
lim
k→∞

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ lim

k→∞
E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
= 0.

Thus, as k → ∞, ∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

a.s.→ 0,

and appealing to Pazy’s result, we conclude the almost sure convergence.

For the remark, here’s full statement of Robbins-Siegmund quasi-martingale
theorem.
Lemma 7.6. F1 ⊂ F2 ⊂ . . . is a sequence of sub-σ-algebras of F where (Ω,F , P ) is a
probability space. When Xk, bk, τk, ζk are non-negative Fk-random variables such that

E [Xk+1 | Fk] ≤ (1 + bk)Xk + τk − ζk,

limk→∞ Xk exists and is finite and
∑∞

k=1 ζk < ∞ almost surely if
∑∞

k=1 bk <
∞,
∑∞

k=1 τk < ∞.

7.3 Bias and variance of normalized iterates

Theorem 7.7. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let
v be the infimal displacement vector of 𝕋. Assume I0, I1, . . . is sampled IID from a
distribution satisfying the uniform expected step-size condition (1) with α ∈ (0, 1], and
assume (2) holds with some β > 0 such that β < α/θ. Let x0, x1, x2, . . . be the iterates
of (RC-FPI).

(a) If v ∈ range (𝕀− 𝕋), then as k → ∞,

E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≲

(β − α2) ∥v∥2M
k

.

(b) In general, regardless of whether v is in range (𝕀− 𝕋) or not,

VarM

(
xk

k

)
≲

(β − α2) ∥v∥2M
k

as k → ∞.
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To clarify, the precise meaning of the first asymptotic statement of (a) is

lim sup
k→∞

kE

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≤ (β − α2) ∥v∥2M .

The precise meaning of the asymptotic statement of (b) is defined similarly.
In this seminar, detailed calculation is omitted. The full proofs and omitted proofs

of lemmas are available in my paper. Let’s start the proof.

Proof. Let z0, z1, z2, . . . be the iterates of (FPI with �̄�) with z0 satisfying θ𝕊z0 = v.
Then, θ𝕊zk = v for all k ∈ N. Apply Lemma 7.1 on xk and zk and take full expectation
to get

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k

∥∥x0 − z0
∥∥2
M

+ E

[
1

k

k−1∑
j=0

U j

]

where U0, U1, U2, . . . is a sequence of random variables :

Uk =− α
(
θ−1 − α

) ∥∥θ𝕊xk − v
∥∥2
M

+ θ2
(
β − α2

) ∥∥𝕊xk
∥∥2
M

.

The key of this proof is to bound Uk asymptotically as the right hand side of the
theorem. Then due to Cesàro mean we may conclude the proof. We will approach such
bound using 𝕊xk and θ𝕊xk − v being nearly orthogonal, hence

Uk
?
≤− θ−1 (α− βθ)

∥∥θ𝕊xk − v
∥∥2
M

+
(
β − α2

)
∥v∥2M . (3)

To be precise, the Lemma 7.9 introduces the nearly orthogonality. Since from the
almost sure convergence of the normalized iterate (Theorem 7.5), we can say that with
probability 1 the sequence xk satisfies the condition of Lemma 7.9. For such sequence
xk, and for an arbitrary δ ∈ (0, π/2), there exists a Nδ,z such that for all k > Nδ,z,〈

v,𝕊xk − 𝕊z
〉
M

≤ sin δ ∥v∥M
∥∥𝕊xk − 𝕊z

∥∥
M

.

From the inequality above, for all sufficiently large k > Nδ,z,

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θτδ,z,k
∥∥𝕊xk − 𝕊z

∥∥
M

.

Here, τδ,z,k is defined as

τδ,z,k =
(
β − α2

)
(∥θ𝕊z − v∥M + sin δ ∥v∥M ) +

(
α− α2θ

) ∥∥𝕊z − 𝕊zk
∥∥
M

.

First step is to bound τδ,z,k independent from k. The second term can be bounded
using

∥∥𝕊zk∥∥
M

≤ ∥𝕊z∥M and triangular inequality with θ−1v as the third point. After
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a suitable calculation, it is possible to define τ̃δ,z ≤ τδ,z,k that satisfies

θ𝕊z → v, δ → 0 ⇒ τ̃δ,z → 0

The second step is to make bound without the xk term. We can bound Uk as

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θτ̃δ,z
∥∥𝕊xk − 𝕊z

∥∥
M

≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃2δ,z.

However, note that this upper bound holds only at k > Nδ,z where Nδ,z also depends
on the choice of the sequence xk, thus such upper bound only works when the sequence
x0, x1, x2, . . . is fixed. To avoid this problem, take a limit supremum of Uk over k :

lim sup
k→∞

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃2δ,z.

Furthermore, due to Cesàro mean,

lim sup
k→∞

{
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

}
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃2δ,z.

Note that above equation holds with probability 1. By Fatou’s lemma, we also have

lim sup
k→∞

E

[
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

]
≤ E

[
lim sup
k→∞

{
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

}]
.

Thus, lim supk→∞ E
[
k
∥∥∥xk

k − zk

k

∥∥∥2
M

]
has a upper bound of

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃2δ,z. (4)

For the final step, choose z as the point θ𝕊z = v to prove the statement (a), use
minimum square norm property of variance to proce the statement (b). Then, take the
limit of θ𝕊z → v, δ → 0 to conclude the proof.

Lemma 7.8. Suppose θ-averaged operator 𝕋 : H → H has an infimal displacement
vector v. Consider a closed cone Cδ in H with δ ∈ (0, π/2), which is a set of vectors
whose angle between them and v being less than π/2− δ.

Cδ = {x : ⟨v, x⟩M ≥ sin δ ∥v∥M ∥x∥M} .
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When the points y, z ∈ H satisfy that 𝕊y ∈ 𝕊z + Cδ and 𝕊y ̸= 𝕊z, then the following
inequality holds.

⟨−v, y − z⟩M ≤ cos δ ∥v∥M ∥y − z∥M .

Lemma 7.9. Let 𝕋 : H → H be a θ-averaged operator with respect to ∥·∥M . Let v
be the infimal displacement vector of 𝕋. Let 𝕊 = θ−1 (𝕀− 𝕋). Consider a sequence
y0, y1, y2, . . . in H such that its normalized iterate converges strongly to −γv,

lim
k→∞

yk

k
= −γv,

for some γ > 0. Then, for any δ ∈ (0, π/2) and z ∈ H, there exists Nδ,z ∈ N such that,
for all k > Nδ,z, 〈

v,𝕊yk − 𝕊z
〉
M

≤ ∥v∥M
∥∥𝕊yk − 𝕊z

∥∥
M

sin δ.

Proof. Choose a point z in H. To prove by contradiction, suppose that for any l, there
exists kl > l such that

𝕊ykl ∈ 𝕊z + Cδ, 𝕊ykl ̸= 𝕊z.

The subsequence yk1 , yk2 , yk3 , . . . satisfies the inequality below for all l, due to
Lemma 7.8. 〈

−v, ykl − z
〉
M

≤ cos δ ∥v∥M
∥∥ykl − z

∥∥
M

.

Divide each side by kl and take a limit as l → ∞. Since liml→∞ ykl/kl = −γv strongly,

γ ∥v∥2M = ⟨−v,−γv⟩M ≤ cos δ ∥v∥M ∥−γv∥M < γ ∥v∥2M ,

which yields a contradiction.
Thus, when z is given, for any δ ∈ (0, π/2), there exist a Nδ,z such that for all

k > Nδ,z, it is either 𝕊y
k = 𝕊z or 𝕊yk /∈ 𝕊z + Cδ. As a conclusion, for all k > Nδ,z,〈

v,𝕊yk − 𝕊z
〉
M

≤ sin δ ∥v∥M
∥∥𝕊yk − 𝕊z

∥∥
M

.

7.4 Tightness of variance bounds

In this section, we provide examples for which the variance bound of Theorem 7.7
holds with equality and with a strict inequality. We then discuss how the geometry of
range (𝕀− 𝕋) influences the tightness of the inequality. Throughout this section, we
consider the setting where the norm and inner product is ∥ · ∥-norm and ⟨·, ·⟩, with
H = Rm, Hi = R, and I follows uniform distribution on the set of standard unit
vectors of H. In this case, the smallest β we can choose is α = 1/m.
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7.4.1 Example: Theorem 7.7(b) holds with equality.

Consider the translation operator 𝕋(x) = x− v. When x0, x1, x2, . . . are the iterates
of (RC-FPI) with 𝕋, then

kVarM

(
xk

k

)
= α (1− α) ∥v∥2

for k = 1, 2, . . . , and the variance bound of Theorem 7.7 holds with equality.

7.4.2 Example: Theorem 7.7(b) holds with strict inequality.

Define 𝕋 : R2 → R2 as

𝕋 : (x, y) 7→
(
x− 1 + x− y

2
, y − 1 + y − x

2

)
,

which is 1/2-averaged and has the infimal displacement vector (1/2, 1/2).
When (x0, y0), (x1, y1), (x2, y2), . . . are the iterates of (RC-FPI) with 𝕋, then

lim sup
k→∞

kVarM

((
xk, yk

)
k

)
=

1

24
. (5)

On the other hand, the right hand side of the inequality in Theorem 7.7 (b) is

α (1− α) ∥v∥2 =
1

2

(
1− 1

2

)
∥v∥2 =

1

8
.

7.5 Relationship between the variance and the range set.

Consider the three convex sets A, B, and C in Figure 1 as a subset of H = R2. The
explicit definitions are

A = {(x, y) | x ≤ −10, y ≤ −5}

B =
{
(x, y) | dist ((x, y), 3A) ≤ 2

√
52 + 102

}
C = {(x, y) | −2x− y ≥ 25} ,

where dist ((x, y), 3A) denotes the (Euclidean) distance of (x, y) to the set 3A =
{(3x, 3y) | (x, y) ∈ A}. The minimum norm elements in each set are all identically equal
to (−10,−5).

Let 𝕋 = 𝕀 − θProj, where Proj denotes the projections onto A, B, and C. Then
𝕋 is θ-averaged and range (θ−1(𝕀− 𝕋)) is equal to A, B, and C, respectively. These
sets are designed for 𝕋 to have the same infimal displacement vector. Figure 2 (left),
shows that the normalized iterates of the three instances have different asymptotic
variances despite identical v. In the experiment, θ was set as 0.2, and as a consequence,
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v = (−2,−1) is the infimal displacement vector for each experiments. (RC-FPI) is
performed with x0 = (0, 0), m = 2 and H1 = H2 = R.

(a) A (b) B (c) C

Fig. 1 Visualization A, B, and C as defined in Section 7.4. The grey dot is θ−1v, where v is the
infimal displacement vector of 𝕋 = 𝕀− θProj.
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Fig. 2 (Left) Graph of kV̂ar
(
xk/k

)
by k, where V̂ar

(
xk/k

)
is the variance estimate with 10,000

samples. (Right) Visualization of A, B, and C as red, yellow, green regions and Dz,δ as the hatched
area, where the sets are as defined in Section 7.4. We conjecture that the broader intersection with
Dz,δ leads to smaller asymptotic variance.

We conjecture that the asymptotic variance is intimately related to the geometry
of the set range (θ−1(𝕀− 𝕋)). For z ∈ Rn and δ > 0, let

Dz,δ =
{
u ∈ R2

∣∣⟨v, u− 𝕊z⟩ ≤ ∥v∥ ∥u− 𝕊z∥ sin δ
}
.

Lemma 7.9 states that eventually, 𝕊xk ∈ Dz,δ for sufficiently large k. Since 𝕊xk ∈
range (θ−1(𝕀 − 𝕋)) for all k, the shaded region in the Figure 2 (right) depicting
Dz,δ ∩ range (θ−1(𝕀− 𝕋)) actually shows the region where 𝕊xk lies for large k. In the
proof of Theorem 7.7, loosely speaking, we establish the upper bound using

−θ (α− βθ)
∥∥𝕊xk − θ−1v

∥∥2
M

≤ 0.

Therefore, the variance can be strictly smaller than the upper bound when∥∥𝕊xk − θ−1v
∥∥2
M

is large, which can happen when the area of intersection Dz,δ ∩
range (θ−1(𝕀− 𝕋)) is large near θ−1v. This can be observed in Figure 2, which shows
that the range set having large intersection with Dz,δ have smaller asymptotic variance.
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7.6 Infeasibility detection

In this section, we present the infeasibility detection method for (RC-FPI) using the
hypothesis testing.
Theorem 7.10. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let
v be the infimal displacement vector of 𝕋. Assume I0, I1, . . . is sampled IID from a
distribution satisfying the uniform expected step-size condition (1) with α ∈ (0, 1], and
assume (2) holds with some β > 0 such that β < α/θ. Let x0, x1, x2, . . . be the iterates
of (RC-FPI). Then

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≲

(
β − α2

)
δ2

k(ε− αδ)2

as k → ∞, where v is the infimal displacement vector of 𝕋.
Therefore, for any statistical significance level p ∈ (0, 1), the test∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

with

k ≳

(
β − α2

)
δ2

p (ε− αδ)
2

can reject the null hypothesis and conclude that ∥v∥M > δ, which implies that the
problem is inconsistent.

For the proof of the Theorem 7.10, we begin with the simpler case where v ∈
range (𝕀− 𝕋). Let ∥v∥M ≤ δ be the null hypothesis with δ satisfying αδ < ϵ. By the
triangle inequality, Markov inequality, and Theorem 7.7, under the null hypothesis,

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≤ P

(∥∥∥∥xk

k
+ αv

∥∥∥∥
M

≥ ε− αδ

)
≤ 1

(ε− αδ)2
E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]

≲

(
β − α2

)
δ2

k(ε− αδ)2

as k → ∞.
When v /∈ range (𝕀 − 𝕋), we can still obtain the same (asymptotic) statistical

significance with the same test and the same iteration count k ≳
(β−α2)δ2

p(ε−αδ)2
. The full

proof of the general case is provided in my paper.
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