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Abstract
The Kuramoto type models such as the Lohe sphere model describes the mechanics of the particles that are

coupled to each other. These models mathematically describes phenomenons such as synchronization or clustering.
However, due to its complexity, its exact solution and converging conditions remains to be hidden. In this paper,
we applied the Renormalization Group method to analysis the system. Under non-resonance conditions, we have
calculated up to the second order RG system, which gives more accurate numerical solutions. From the symmetry
between stable manifolds of original system and renormalized system, it was possible to find the state that the Lohe
sphere model converges under clustering conditions.

Introduction
In complex systems where objects interact, we can easily observe natural phenomena where the peri-
odical phase speed of objects in a system becoming the same. Such phenomenon is called ’synchro-
nization phenomenon’. The Kuramoto type models describes the synchronization mathematically.
However, despite the importance of the Kuramoto type models, their exact solutions and convergence
analysis are not yet discovered due to its complexity.

The convergence analysis by computing the numerical solutions generates a secular term in the ap-
proximate solution. The secular term diverges as the time goes to infinity, while the exact solution
is bounded. Renormalization Group method cancels out the secular term using the envelope theory.
With Renormalization Group method, we were able to find the state of the system if it converges.

Main Objectives
1. Integration results on forms involving matrix exponential terms.
2. RG equations of the Lohe sphere model with the non-resonance conditions.
3. RG equations of the Lohe sphere model with the clustering conditions.
4. Computation of the stable manifold of the Lohe sphere model with the clustering conditions.

Preliminaries

The Kuramoto type models
The Lohe sphere model is a model that describes the dynamics of particles on n-th dimensional unit
sphere, with the coupling applied. The 2-dimensional case responds to the Kuramoto model, which
describes the collective dynamics on the unit circle. Let θi ∈ S be the angular position of the i-th
particle on unit circle. The Kuramoto model and the dynamics of θi reads as the following :

θ̇i = ωi +
κ

N

N∑
k=1

sin
(
θj − θi

)
, i = 1, · · · , N, (1)

where ωi ∈ R is the natural frequency of the i-th particle, and κ is the coupling strength [4]. Now,
generalize the Kuramoto model to the d-dimension. Let xi ∈ Sd be the position of the i-th Lohe
particle. The Lohe sphere model and the dynamics of xi reads as the following :

ẋi = Ωixi +
κ

N

N∑
k=1

(
xk −

〈xi, xk〉
〈xi, xi〉

xi

)
, i = 1, · · · , N, (2)

where Ωi is the natural frequency matrix of the i-th particle which is skew-symmetric, and κ is the
coupling strength [5].

The Renormalization Group method
The key idea of the Renormalization Group method is approximating the exact solution at every time
and position, to generate the approximated flow. The differential equation generated by approximated
flow , which is called as RG equation, gives the approximated solution without any secular term[2].
Reducing the secular term is useful for long-time analysis, including the convergence analysis.

Consider ODE

ẋ = Fx + εg(t, x, ε) (3)

where ε ∈ R is a small parameter, F is a n × n matrix whose all eigenvalues lie on the imaginary
axis or the left half plane, and g(t, x, ε) is C∞ class vector field with each term in its power expansion
g(t, x, ε) = g1(t, x) + εg2(t, x) + · · · are periodic in t and polynomial in x.
Definition 1. We define the mth order RG equation for (3) as

dA

dt
= Ȧ = εR1(A) + ε2R2(A) + · · · + εmRm(A), A ∈ Rn, (4)

where X(t) = eFtA is a solution of the unperturbed part ẋ = Fx, Gi is an i-th order part of pertur-
bation term g, and

R1(A) := lim
t→∞

1

t

∫ t
X(s)−1G1(s,X(s)A)ds.

Theorem 1 (Existence of invariant manifolds). Let εkRk(A) be a first non-zero term in the RG equa-
tion. If the vector field εkRk(A) has a normally hyperbolic invariant manifold N , then the original
equation also has a normally hyperbolic invariant manifold Nε, which is diffeomorphic to N, for
sufficiently small |ε|. In particular, the stability of Nε coincides with that of N . [1]

Results
First, key result on integration on matrix exponential is the following theorem.
Theorem 2. When A,B are non-singular skew-symmetric and a, b ∈ Rd,

lim
t→∞

1

t

∫ t
e−AsabTeBsds =

∑
λ;det(C−λI)=0

PAλ a
(
PBλ b

)†
, (5)

where PAλ represents a projection on eigenspace of A with eigenvalue λ.

Now, define the non-resonance conditions on the Lohe sphere model.

Definition 2. The non-resonance conditions are defined as :
1. ΩiΩj is symmetric for any i, j.
2. Ωi − Ωj is nonsingular whenever i 6= j.
3. Ωi − Ωj and Ωj − Ωk do not share any eigenvalues whenever i, j, k are distinct indices.

From the theorem 2, we were able to compute R1 and R2 of the Lohe sphere model with the non-
resonance conditions.

R1(y)|i = yi

(
1− yTi yi

)
R2(y)|i =

N∑
k 6=i

(
1 + ||yk||2

)
(Ωi − Ωk)−1 yi

(6)

Next, we give the Lohe sphere model with the clustering condition.

˙xij = Ωixij +
κ

N

(
I − xijxTij

) m∑
k=1

nk∑
l=1

xkl, N =

m∑
k=1

nk. (7)

The clustering condition represents the situation when there are small number of natural frequency
choices. In the [3], it is previously shown that every particles converges to a single particle if their
natural frequencies are identical. The clustering condition generalizes to the m choices of natural
frequencies instead of one. The 1st order RG equation of the Lohe sphere model with the clustering
condition is,

˙yij = εR1(y)|ij =
κ

N

(
I − yijyTij

) ni∑
l=1

yil. (8)

In 2-dimensional Kuramoto case, we may rewrite the (8) with polar coordinates,

˙φij =

n∑
l=1

sin(φil − φij). (9)

Consider the manifold satisfying φij = θi for every j, for each i, which corresponds to the state
where particles with same natural frequencies cluster to one. The Jacobian of (9) on this manifold is
11T −nI for each i, which contains n− 1 negative eigenvalues and one zero eigenvalue. Thus, it is a
stable manifold. By the symmetry of the stable manifolds 1, φij = θi for every j also gives the stable
manifold for the original problem.

Figure 1: Result of the simulation. Group of m = 5 were used, with the coupling strength as κ = 0.05. The natural
frequencies are set as (ni, ωi) =(7, 0.05), (12, 0.07),(11, 0.08),(9, 0.03),(11, 0.02).

Figure shows the results of the simulation of the 2-dimensional Lohe sphere model with the cluster-
ing condition. From the first five graphs, we could observe that particles in the same group converges
and acts like a single particle over time. This clustering phenomenon which coincides with the sta-
ble manifold we computed. For the last graph we could check the synchronization phenomenon but
particles in distinct groups do not cluster as one.

Conclusions
• When the non-resonance conditions are given, we have computed through second order RG equa-

tion. The second order RG equation was sufficient to use the symmetry of stable manifold.
• With the clustering conditions, we were able to find the stable manifolds using the first order RG

equation. The state where the particles with equal natural frequencies being clustered as one in-
duces the stable manifold. Additionally, we could observe that the system actually converges to
this stable manifold.

Forthcoming Research
For further analysis on the clustering condition, we plan to study on the symmetry of convergence
radius of the stable manifolds. It will bring the convergence conditions on the Lohe sphere model by
using convergence radius of the stable manifolds of RG equations.
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