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Abstract. The Kuramoto type models such as the Lohe sphere model describes the me-
chanics of the particles that are coupled to each other. These models mathematically
describes phenomenons such as synchronization or clustering. However, due to its com-
plexity, its exact solution and converging conditions remains to be hidden. In this paper,
we applied the Renormalization Group method to analysis the system. Using the sym-
metry between invariant manifolds of Renormalized Group equation and original system,
it was possible to show that the manifold corresponding to the clustering or complete
synchronization among particles is indeed stable.

1. Introduction

In complex systems where objects interact, we can easily observe natural phenomena
around us that show a more consistent and uniform pattern of motion of the objects over
time. Such phenomenon is called a ’clustering phenomenon’, examples of which include a
flocking phenomenon and a synchronization phenomenon. Flocking phenomenon refers to
the motion of the objects at the same speed in a disordered behavior, and synchronization
phenomenon refers to the phase and phase speed of objects in a system with periodicity
becoming the same. The study of clustering phenomena in such complex systems has been
positioned as a very important factor in understanding fields such as biology [6], statistical
physics, and sociology.

Flocking research, basically based on mathematical modeling, was first attempted in 1995
by Hungarian statistical physicist Vicsek and his co-researchers [10]. Soon after that, in
2007, Cucker and Smale proposed a new model, which is an enhancement of a previous
Vicsek model. Then it followed by various models for explaining synchronization which
have also been established by many mathematicians. The two models to be mentioned in
this study are the Kuramoto model and the Lohe model.

The Kuramoto model was first proposed by Yoshiki Kuramoto in 1975 [8]. This model is
abstracted assuming a biochemical situation where numerous coupled oscillators interact,
and the coupling strength between the objects is described as a governing equation. The
simplest form of the Kuramoto model limited to the one-dimensional phase space contains
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the content that it is coupled by the following sinusoidal function.

θ̇i = ωi +
κ

N

N∑
k=1

sin (θj − θi), i = 1, · · · , N

The Lohe model deals with the interaction of particles on a unit sphere. The relation-
ship between particles can be extended similarly to the Kuramoto model. The interaction
relation between particles in the Lohe model is as follows.

ẋi = Ωixi +
κ

N

N∑
k=1

(
xk −

〈xi, xk〉
〈xi, xi〉

xi

)
, i = 1, · · · , N

In the above two models, regardless of the phase and phase velocity of the initial particles,
a phenomenon in which the phase velocity becomes the same over time or a clustering
phenomenon in the same phase is observed. In the sense that such a surprising result
is found in spite of a very simple analytical structure, it can represent numerous natural
phenomena as well as being actively used in related fields. For example, the Kuramoto
model is widely used as a synchronization model in statistical physics.

Despite the importance of the Lohe sphere model or the Kuramoto model, their exact
solutions are not yet discovered and even seems to be impossible. Additionally, the converg-
ing condition remains to be open in general case. There were some numerical approaches to
solve the convergence of the system, but previous numerical approaches works only when
the coupling is strong.

The convergence analysis by computing the numerical solutions are difficult due to the
diverging error term. The most common method, a perturbation method, generates a
secular term in the approximate solution. The secular term diverges as the time goes
to infinity, while the exact solution is bounded. This is the main difficulty in numerical
analysis, and the reason why the previous approaches works when the coupling is strong.

In this paper, we will apply Renormalization Group method. Renormalization Group
method cancels out the secular term using the envelope theory. The approximation of the
exact solution is computed at every time and position, generating the approximated flow.
The differential equation generated by approximated flow , which is called as RG equation,
gives the approximated solution without any secular term [3]. Reducing the secular term is
useful for long-time analysis, including the convergence analysis.

By application of RG method, we found the stable manifold that corresponds to the
clustering phenomenon of the Lohe sphere model. This result yields from the symmetry of
the stable manifold of RG equation and original system. Since the clustering phenomenon
corresponds to the stable manifold, we assume that under some conditions the system will
converge and show the clustering formation over time. We will verify this by simulation
later in the paper.

The rest of this paper is organized as follows. In section 2, we will review on previous
works, including definitions of the Kuramoto type models and the Renormalization Group
method. In section 3, we will present lemmas on integration involving matrix exponentials,
which are used later in this paper. In section 4, we will focus on the clustering phenomenons
among particles with identical natural frequencies using the symmetry of the stable mani-
folds. In section 5, we present a simulation result on simple example, which coincides with
the theoretical result of section 4. In section 6, RG equations and approximated solution
of the Lohe sphere model with the non-resonance conditions will be computed.



APPLICATIONS OF RENORMALIZATION GROUP METHOD FOR GENERALIZED KURAMOTO TYPE MODELS3

2. Preliminaries

In this section, we review on the Kuramoto type models. The Lohe sphere model is a
model that describes the dynamics of particles on n-th dimensional unit sphere, with the
coupling applied. The 2-dimensional case responds to the Kuramoto model, which describes
the collective dynamics on the unit circle. After the reviews on the Kuramoto type models,
we will cover about the Renormalization Group method.

2.1. The Kuramoto type models.

2.1.1. The Kuramoto model. Let θi ∈ S be the angular position of the i-th particle on unit
circle. The Kuramoto model and the dynamics of θi reads as follows:

(2.1) θ̇i = ωi +
κ

N

N∑
k=1

sin (θj − θi), i = 1, · · · , N,

where ωi ∈ R is the natural frequency of the i-th particle, and κ is the coupling strength
[7].

2.1.2. The Lohe sphere model. Let xi ∈ Sd be the position of the i-th Lohe particle. The
Lohe sphere model and the dynamics of xi reads as follows:

(2.2) ẋi = Ωixi +
κ

N

N∑
k=1

(
xk −

〈xi, xk〉
〈xi, xi〉

xi

)
, i = 1, · · · , N,

where Ωi is the natural frequency matrix of the i-th particle which is skew-symmetric,
and κ is the coupling strength [9]. Next, we present a conserved quantity of the Lohe sphere
model. In Lohe sphere model, each particle’s distance from the origin stays at constant 1.

Lemma 2.1. Let xi be a solution to (2.2) with initial point xi(0) with ‖xi(0)‖ = 1. Then,
‖xi(t)‖ = 1 for any positive t.

Proof. From each Ωj being skew-symmetric, 〈xi,Ωixi〉 = 0 since

〈xi,Ωixi〉 =
〈
Ωi

Txi, xi
〉

= −〈Ωixi, xi〉 = −〈xi,Ωixi〉 .

Now, differentiate the square of the norm ‖xi(t)‖2,

1

2

d

dt
‖xi(t)‖2 =

〈
xi(t), ˙xi(t)

〉
= 〈xi(t),Ωixi(t)〉+

κ

N

N∑
k=1

(〈xi(t), xk(t)〉 − 〈xi(t), xk(t)〉) = 0.

Thus, norm of xi stays constant, concluding ‖xi(t)‖ = 1 for any positive time t. �

In this paper, we will only consider the case where each particle starts at the unit sphere.
From the above lemma, each particle stays at the unit sphere. Hence, the system (2.2) can
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be rewritten as the following:

ẋi = Ωixi +
κ

N

N∑
k=1

(xk − 〈xi, xk〉xi)

= Ωixi +
κ

N

N∑
k=1

(
xk − xixTi xk

)
= Ωixi +

κ

N

(
I − xixTi

) N∑
k=1

xk,

(2.3)

where I is (d+ 1)× (d+ 1) identity matrix.

2.2. The Renormalization Group method. In this subsection, we introduce Renormal-
ization Group (RG) method and some key theorems [3].

Let F be an n× n matrix whose all eigenvalues lie on the imaginary axis or the left half
plane. We assume that at least one eigenvalue is on the imaginary axis. Let g(t, x, ε) be
a time-dependent vector field on Rn which is of C∞ class with respect to t, x and ε. Let
g(t, x, ε) has a formal power series expansion in ε, g(t, x, ε) = g1(t, x) + εg2(t, x) + · · · . We
assume that gi(t, x)’s are periodic in t and polynomial in x. Now consider an ODE

ẋ = Fx+ εg(t, x, ε)

= Fx+ εg1(t, x) + ε2g2(t, x) + · · · ,
(2.4)

where ε ∈ R is a small parameter. Substitute x by x = x(0) +εx(1) +ε2x(2) + · · · and expand
the right-hand side of the above equation with respect to ε, we get a series of ODEs of
x(0), x(1), x(2), ... :

˙x(0) = Fx(0),

˙x(1) = Fx(1) +G1(t, x(0)),

...

˙x(i) = Fx(i) +Gi(t, x
(0), x(1), · · · , x(i−1)),

where the inhomogeneous terms Gi’s are smooth fucntion of t, x(0), · · · , x(i−1). G1, G2, · · · ,
which are given by

G1(t, x(0)) = g1(t, x(0)),

G2(t, x(0), x(1)) =
∂g1

∂x
(t, x(0))x(1) + g2(t, x(0)),

....

There is a solution of the unperturbed part ˙x(0) = Fx(0) by x(0)(t) = X(t)y, where

X(t) = eFt and y ∈ Rn is an initial value. With this x(0), the equation of x(1) is rewritten
as

˙x(1) = Fx(1) +G1(t,X(t)y).
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The solution of above equation is

x(1) = X(t)X(τ)−1h+X(t)

∫ t

τ
X(s)−1G1(s,X(s)y)ds,

where h ∈ Rn is an initial value at an initial time τ ∈ R. Define R1(y) and h
(1)
t (y) by

R1(y) := lim
t→∞

1

t

∫ t

X(s)−1G1(s,X(s)y)ds,

h
(1)
t (y) := X(t)

∫ t

(X(s)−1G1(s,X(s)y)−R1(y))ds,

respectively. We can verify that R1(y) is well defined. With these, when we replace h with

h
(1)
τ (y), above equation is rewritten as

x(1) := x1(t, τ, A) = h
(1)
t (y) +X(t)R1(y)(t− τ).

In this, one part h
(1)
t (y) is bounded uniformly in t ∈ R (see [1]), and the other part

X(t)R1(y)(t − τ) is linearly increasing in t. We call this as the secular term. We can find

solution of x(2) similarly with

R2(y) := lim
t→∞

1

t

∫ t [
X(s)−1G2(s,X(s)y, h(1)

s (y))−X(s)−1(Dh(1)
s )yR1(y)

]
ds,

h
(2)
t (y) := X(t)

∫ t [
X(s)−1G2(s,X(s)y, h(1)

s (y))−X(s)−1(Dh(1)
s )yR1(y)−R2(y)

]
ds.

Note that x(3), x(4), · · · can also be calculated in similar steps, but since we only use up
to 2nd order in this paper, we omit the higher order results. Now the curve x(0) + εx(1) +
ε2x(2) is an approximated solution for the original system. Each approximated solutions are
parameterized with the initial time and starting point τ, y. We aim to choose the starting
point y = y(τ) so that the curve x(0) + εx(1) + ε2x(2) is independent of τ . It can be written
as

d

dτ
|τ=t(x

(0) + εx(1)(t, τ, y(τ)) + ε2x(2)(t, τ, y(τ))) = 0.

This equation is called the RG condition, and it gives an ODE as follows [3] :

Definition 2.1. We define the mth order RG equation for (2.4) as

(2.5)
dy

dt
= ẏ = εR1(y) + ε2R2(y) + · · ·+ εmRm(y), y ∈ Rn.

We define the mth order RG transformation αt : Rn → Rn as

(2.6) αt(y) = X(t)y + εh
(1)
t (y) + · · ·+ εmh

(m)
t (y).

Furthermore, when y = y(t, t0, ξ) is a solution of mth order RG equation with initial time
t0 and initial value ξ, the curve x̃(t) = x̃(t, t0, ξ) defined by

(2.7) x̃ = αt(y(t, t0, ξ)) = X(t)y(t, t0, ξ) + εh
(1)
t (y(t, t0, ξ)) + · · ·+ εmh

(m)
t (y(t, t0, ξ)).

is an approximate solution for the original system with C1 approximation.
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Theorem 2.1 (Error Estimate [1]). There exist positive constants ε0, C, T and a compact
subset V = V (ε) ⊂ Rn with the origin included such that for ∀|ε| < ε0, every solution x(t)
of (2.4) and its mth order RG approximated solution x̃(t) with x(0) = x̃(0) ∈ V (ε) satisfy

‖x(t)− x̃(t)‖ < Cεm, 0 ≤ t ≤ T/ε.

Also, it is possible to determine stability of an invariant manifold of a system using the
stability of an invariant manifold of non-zero RG equation.

Theorem 2.2 (Existence of invariant manifolds [2]). Let εkRk(A) be a first non-zero term
in the RG equation. If the vector field εkRk(A) has a normally hyperbolic invariant manifold
N , then the original equation also has a normally hyperbolic invariant manifold Nε, which
is diffeomorphic to N, for sufficiently small |ε|. In particular, the stability of Nε coincides
with that of N .

3. Integrations involving matrices

In this section, we will cover about integration involving exponential of matrices of form∫ t

e−AsV eBsds

with matrices A,B being skew-symmetric and non-singular, and V being matrix of rank 1.
We define vectors a, b as a pair of vectors that satisfies V = abT . Let’s build a block matrix

C =

(
A V
O B

)
with O as a zero matrix. Then, an exponential of Ct is :

(3.8) eCt =

(
eAt F (t)
O eBt

)
with some function F (t). Use the relation d

dte
Ct = CeCt, we can derive the following

equation.

d

dt
F (t) = AF (t) + V eBt

By solving this equation, F (t) is

(3.9) F (t) =

∫ t

eA(t−s)V eBsds.

Thus, it is possible to calculate
∫ t
e−AsV eBsds by calculating eCt. We perform this

calculation with three steps. First we compute a Jordan form of the matrix C, then modify
in the block matrix shape similar to the Jordan form, and lastly compute the desired
function.

3.1. Jordan form of the matrix. First, we will find the Jordan form of matrix C for
exponential computation. Since the characteristic polynomial of C is identical to the char-

acteristic polynomial of E =

(
A O
O B

)
, the diagonal components of the Jordan form of C

are eigenvalues of A and B according to its algebraic multiplicity.
Now, consider λ, which is one of eigenvalues of either A or B. To calculate Jordan block

J(λ), we need to compare geometric and algebraic multiplicity.
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(1) Only A has λ as an eigenvalue.
In this case, Jordan blocks of λ has size 1. With A being diagonalizable, λ has same
algebraic and geometric multiplicity of A. Say λ and multiplicity m of A. Since B
does not has λ as an eigenvalue, algebraic multiplicity of λ of C is also m. Consider
set of independent vectors{(

uiλ
0

)
: uiλ is an eigenvector of A with an eigenvalue λ, i = 1, ...,m

}
which is a set of m eigenvectors of C with λ eigenvalue. This set forms eigenspace
of λ of C with dimension m. Thus, λ has same algebraic and geometric multiplicity
of C, making Jordan part of λ as J1(λ)

⊕
J1(λ)

⊕
...J1(λ).

(2) Only B has λ as an eigenvalue.
This case is almost identical to the first case, with set of independent eigenvectors
of λ of C as :{(
− (A− λI)−1 V viλ

viλ

)
: viλ is an eigenvector of B with an eigenvalue λ, i = 1, ..., n

}
Since A − λI is invertible, this set is well defined, and forms eigenspace of λ of C
with dimension n where n is algebraic multiplicity of λ of B and C. Thus, Jordan
part of λ is J1(λ)

⊕
J1(λ)

⊕
...J1(λ).

(3) Both A and B have λ as an eigenvalue, When V = abT ,
(a) a is in column space of A− λI or b is in row space of B − λI.

In this case, say row echelon form of A− λI as RA = EA(A− λI), and B − λI
as RB = EB(B − λI). then,(

EA O
O EB

)
(C − λI) =

(
RA EAab

T

O RB

)
.

If a is in column space of A− λI, EAab
T can have nonzero row only when RA

has nonzero row. If b is in row space of B − λI, then each row of EAab
T is a

linear combination of rows in RB. In either case, we can conclude that nullity
of C − λI is identical to the sum of nullity of A− λI and B− λI, which is also
algebraic multiplicity of λ. Thus, Jordan part of λ is J1(λ)

⊕
J1(λ)

⊕
...J1(λ).

The corresponding vectors are the following :{(
uiλ
0

)
: i = 1, ...,m

}
∪
{(
−(bT viλ)pλ

viλ

)
: i = 1, ..., n

}
,

where pλ is some vector such that satisfies (A−λI)pλ = a when a is in column
space of A− λI, or{(

uiλ
0

)
: i = 1, ...,m

}
∪
{(

0
viλ

)
: i = 1, ..., n

}
,

when b is in row space of B − λI.
(b) Otherwise

In other case, there exists nonzero row of EAab
T with RA having zero row

exists. Such rows are linearly independent from rows of RB, while each being
equal up to constant factor. This leads to the result of that the nullity of
C−λI is smaller by 1 to the sum of nullity of A−λI and B−λI. Thus, Jordan
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part of λ is J2(λ)
⊕
J1(λ)

⊕
...J1(λ), with only one block being size of 2. The

corresponding vectors are the following :

{(
uiλ
0

)
: i = 1, ...,m

}
∪
{(

(bT v1
λ)qλ
v1
λ

)}
∪
{(

0
(bT v1

λ)viλ − (bT viλ)v1
λ

)
: i = 2, ..., n

}
,

where qλ is some vector such that satisfies (A−λI)2qλ = −(A−λI)a, and u
(1)
λ

is chosen from eigenspace as (A− λI)qλ + a.

3.2. Modification of Jordan form. From the results from Jordan form, we can separate
C into diagonalizable part and nilpotent part as diagonal and superdiagonal parts. Let such
separation as C = M +N , where M is diagonalizable part and N is nilpotent part. From
the Jordan form, we can easily show that M and N commutes and N2 = O.

Before further calculation, by applying permutation and change of basis on eigenspaces,
we may write C = SJS−1 as following :

(3.10) S =

(
UA R
O UB

)
, S−1 =

(
U−1
A −U−1

A RU−1
B

O U−1
B

)
, J =

(
ΛA H
O ΛB

)
,

where UA = [u1|u2|...|ud] and UB = [v1|v2|...|vd] are unitary matrix formed with their
orthonormal eigenvectors as its column vectors, and R and H follows the following rule.

For each eigenvector vj of B with its eigenvalue if λ, the column vector Rj , Hj of R,H is

(1) If A does not contain λ as an eigenvalue, then Hj = 0 and Rj = − (A− λI)−1 V vj .
(2) When A contains an λ as an eigenvalue and a is in column space of A − λI, then

Hj = 0 and Rj = −(bT vj)pλ.
(3) When A contains an λ as an eigenvalue and b is in row space of B−λI, then Hj = 0

and Rj = 0.

(4) Otherwise, Rj = (bT vj)qλ and Hj = U−1
A ((A− λI)qλ + a) (bT vj) .

3.3. Matrix exponential calculation. Now, the decomposition C = M + N can be
written as :

(3.11) C = S

(
ΛA O
O ΛB

)
S−1 + S

(
O H
O O

)
S−1

while M,N commute. Using this decomposition, we can calculate eCt as eMteNt. First
the exact value of eMt is :

eMt = S exp

[(
ΛA O
O ΛB

)
t

]
S−1 = S

(
eΛAt O
O eΛBt

)
S−1

=

(
UAe

ΛAt ReΛBt

O UBe
ΛBt

)
S−1 =

(
UAe

ΛAtU−1
A UAe

ΛAt
(
−U−1

A RU−1
B

)
+ReΛBtU−1

B

O UBe
ΛBtU−1

B

)
=

(
eAt RU−1

B eBt − eAtRU−1
B

O eBt

)
.
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While eNt has the exact value of :

eNt = S exp

[(
O H
O O

)
t

]
S−1 = S

(
I Ht
O I

)
S−1

=

(
UA UAHt+R
O UB

)
S−1 =

(
I −RU−1

B + UAHU
−1
B t+RU−1

B
O I

)
=

(
I UAHU

−1
B t

O I

)
.

Thus, F (t) from (3.8) is :

F (t) = eAtUAHU
−1
B t+RU−1

B eBt − eAtRU−1
B

which induces the following integration result.

(3.12)

∫ t

e−AsV eBsds = UAHU
−1
B t+ e−AtRU−1

B eBt −RU−1
B .

With the result above, let’s rewrite the terms in the forms directly involving the matrices
A and B.

Lemma 3.1. When A and B are non-singular real skew-symmetric matrices with V is a
real matrix with rank 1, (3.12) holds :∫ t

e−AsV eBsds = UAHU
−1
B t+ e−AtRU−1

B eBt.

When A and B do not share any eigenvalues,∫ t

e−AsV eBsds = e−AtRU−1
B eBt.

Proof. From (3.12), the last term can be erased since it is only a constant term in indefinite
integral. If A,B do not share any eigenvalues, the first term vanishes since H = 0. �

Lemma 3.2. When A,B are non-singular real skew-symmetric matrices and V = abT ,

(3.13) lim
t→∞

1

t

∫ t

e−AsV eBsds =
∑

λ;det(C−λI)=0

PAλ a
(
PBλ b

)†
,

where PAλ represents a projection on eigenspace of A with eigenvalue λ.

Proof. Since eAt and eBt are orthogonal matrices, from (3.12),

lim
t→∞

1

t

∫ t

e−AsV eBsds = UAHU
−1
B .

First, from A being diagonalizable, PAλ ((A− λI)qλ) = 0. With (A − λI)qλ + a ∈ EAλ , we

can conclude that (A− λI)qλ + a = PAλ a. In case a is in column space of A− λI, PAλ a = 0.

Then,
∑

j;(B−λI)vj=0 b
T vjv

†
j =

(
PBλ b

)†
. In case b is in row space of B − λI, PBλ b = 0.

Combining these two results,

lim
t→∞

1

t

∫ t

e−AsV eBsds = UAHU
−1
B = UAHU

†
B

=
∑

λ;det(C−λI)

PAλ a
∑

j;(B−λI)vj=0

bT vjv
†
j =

∑
λ;det(C−λI)

PAλ a
(
PBλ b

)†
.

(3.14)
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�

Additionally, if one of A or B does not have λ as an eigenvalue, its eigenspace is zero.

Thus, we can use
∑

λ∈C P
A
λ a
(
PBλ b

)†
alternatively. Remark that if λ yields nonzero matrix

of PAλ a
(
PBλ b

)†
, then −λ also yields nonzero matrix since both A,B are skew-symmetric.

As a corollary of the lemma 3.2, when A and B do not share any eigenvalues, we get the
following result.

Lemma 3.3. When A,B are non-singular real skew-symmetric matrices with no common
eigenvalues, for any real matrix V ,

(3.15) lim
t→∞

1

t

∫ t

e−AsV eBsds = 0.

Proof. We may decompose any matrix V into a sum of rank 1 matrices. Thus, assume
that V is of rank 1 and prove the lemma. Note that at least one of PAλ a or PBλ b are zero,

since λ with nonzero PAλ a and PBλ b is a common eigenvalue. Thus, from the lemma 3.2, we
conclude the proof. �

3.4. Example: nonsingular matrices with size 2. For the special case, let’s check when
A,B ∈ R2×2, A,B and A−B are non-singular. Since A,B are skew-symmetric,

A =

(
0 −a
a 0

)
= U

(
−ia 0

0 ia

)
U †, B =

(
0 −b
b 0

)
= U

(
−ib 0
0 ib

)
U †, U =

1√
2

(
1 i
i 1

)
.

Also, A and B do not share their eigenvalues. Thus, H = 0 and

R = −
(

1
a2−b2

(
ib a
−a ib

)
V 1√

2

(
1
i

)
1

a2−b2

(
−ib a
−a −ib

)
V 1√

2

(
i
1

))
=

1

a2 − b2

{
AV U + ibV

(
i −i
1 −1

)}
.

Since

RU † =
1

a2 − b2
{AV + V B} ,

from the lemma 3.1,

(3.16)

∫ t

e−AsV eBsds =
1

a2 − b2
{
Ae−AtV eBt + e−AtV eBtB

}
.

4. RG equation of Lohe sphere model with clustering conditions

In this section, we will focus on the clustering or complete synchronization in the Lohe
sphere model. In detail, we aim to show that when there are groups of particles with
identical natural frequencies, particles in the same group are likely to converge into a single
particle in sense that such state forms a stable manifold.
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4.1. The clustering condition. In this subsection we will define the clustering condition
for the Lohe sphere model. The clustering condition represents when there are fixed choices
of natural frequencies and each particle chooses its natural frequency among them. In the
work of Y. Choi, S. Ha, and S. Yun [5], it is previously shown that every particles converges
to a single particle if their natural frequencies are identical. The Lohe sphere model with
clustering condition is written as :

ẋij = Ωixij +
κ

N

(
I − xijxTij

) m∑
k=1

nk∑
l=1

xkl, N =

m∑
k=1

nk.(4.17)

Each Ωis are skew-symmetric that satisfy the additional condition :

• Ωi and Ωj do not share any eigenvalues whenever i 6= j.

4.2. Computation of the first order RG equation. The Lohe sphere model with clus-
tering condition has the system :

ẋij = Ωixij +
κ

N

(
I − xijxTij

) m∑
k=1

nk∑
l=1

xkl, N =
m∑
k=1

nk.

Define Ω = diag(In1 ⊗ Ω1, In2 ⊗ Ω2, ..., Inm ⊗ Ωm) as a block matrix. Call κ/N as ε. Then,
the Lohe sphere model with the clustering condition is equivalent to :

ẋ = Ωx+ εg(x),

where g(x)|ij =
(
I − xijxTij

)∑m
k=1

∑nk
l=1 xkl and x ∈ RN(d+1) is a concatenation of x11, x12, ..., xmnm .

Note that,

X(s) = eΩs = diag(In1 ⊗ eΩ1s, In2 ⊗ eΩ2s, ..., Inm ⊗ eΩms).

From G1(x(0)) := g(x(0)) with x(0) = X(s)y,

G1(X(s)y)|ij =
(
Id − eΩisyijy

T
ije
−Ωis

) m∑
k=1

nk∑
l=1

eΩksykl

= eΩis
(
I − yijyTij

) ni∑
l=1

yil + eΩis
(
I − yijyTij

) m∑
k 6=i

nk∑
l=1

e−ΩiseΩksykl.

For the remark, the natural frequencies do not commute, hence the equation eΩieΩj =
eΩi+Ωj does not hold. Now, multiply both sides with X(s)−1,

[X(s)−1G1(X(s)y)]ij = e−ΩisG1(X(s)y)|ij

=
(
I − yijyTij

) ni∑
l=1

yil +
(
I − yijyTij

) m∑
k 6=i

nk∑
l=1

e−ΩiseΩksykl.

By integration,[∫ t

X(s)−1G1(X(s)y)ds

]
ij

=
(
I − yijyTij

) ni∑
l=1

yilt+
(
I − yijyTij

) m∑
k 6=i

nk∑
l=1

[∫ t

e−ΩiseΩksds

]
ykl



12 PAENG, MYOUNG, LEE, HA, AND YOON

From the clustering condition, when k 6= i, Ωi and Ωk do not have identical eigenvalues.
Thus, by the lemma 3.3,

lim
t→∞

1

t

∫ t

e−ΩiseΩksds = 0.

From this integration, we can build 1st order RG equation by calculating R1(y) :

R1(y)|ij = lim
t→∞

1

t

[∫ t

X(s)−1G1(X(s)y)ds

]
ij

=
(
I − yijyTij

) ni∑
l=1

yil.(4.18)

Thus, 1st order RG equation is,

˙yij = εR1(y)|ij =
κ

N

(
I − yijyTij

) ni∑
l=1

yil.(4.19)

4.3. Computation of the stable manifold. For simplification, omit the subscript i from
the 1st order RG equation (4.19) since particles are independent if they have different natural
frequency matrix.

ẏj = ε
(
I − yjyTj

) n∑
l=1

yl.(4.20)

The equation (4.20) has a form identical to the Lohe sphere model when natural frequen-
cies of each particle are identical. From the work of the Y. Choi, S. Ha, and S. Yun [5],
we already know that such system converges to the state where each particles are in same
position. Hence, the invariant manifold

M := {xi1 = xi2 = · · · = xini , i = 1, 2, · · · ,m},
which represents the complete synchronization among particles with same natural frequen-
cies, is stable. Note that the manifold M of the 1st order RG system (4.19) corresponds to
the same manifold M in the original system (4.17). Thus, by the symmetry of the stable
manifolds, the theorem 2.2, the invariant manifold M of (4.17) is also stable in the original
system (4.17).

Theorem 4.1. When Lohe sphere model with groups of particles with identical natural
frequencies :

ẋij = Ωixij +
κ

N

(
I − xijxTij

) m∑
k=1

nk∑
l=1

xkl, N =
m∑
k=1

nk,

satisfies the condition where Ωi and Ωj do not share any eigenvalues whenever i 6= j, then
for sufficiently small κ, the invariant manifold M ,

M := {xi1 = xi2 = · · · = xini , i = 1, 2, · · · ,m},
is a stable manifold of the system.

While the complete synchronization among identical natural frequencies forms a stable
manifold, it is uncertain whether the system actually converges to M . Since the prior works
on the symmetry between invariant manifolds only ensures the stability, it is not possible
to conclude the actual convergence. However, current theorems on RG method includes
the general form of ODEs with perturbations. It might be possible to obtain symmetries
in convergence itself, if we specify the target, rather than handling general ODE. We leave
the question for the future work.
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5. Simulations

In this section, we performed numerical simulations and it coincides with the results
from the section 4. Runge-Kutta method of order 4 is used. We considered the Lohe sphere
model with dimension 2, i.e. the Kuramoto model. Group of m = 5 with κ = 0.05 were
used, with (ni, ωi) = (7, 0.05), (12, 0.07), (11, 0.08), (9, 0.03), (11, 0.02).

The Figure 1 shows the angular position of every 50 particles by time. Slopes in the
figure represent particles’ angular velocity. We could see that the slopes converges to the
same value, representing the synchronization phenomenon. The Figure 3 shows the angular
position in circle, i.e. modulus by 2π, for particles in each groups. We could observe that
particles in the same group shows clustering phenomenon or complete synchronization,
coinciding with the stable manifold we computed in the section 4. However, it seems the
clustering phenomenon are present only for the particles in the same group, as shown in
The Figure 2.

Figure 1. Angular position of every 50 particles by time. As the time flows,
we can check the synchronization phenomenon.

Figure 2. Angular position of 5 particles with different natural frequencies.
We can check the synchronization phenomenon but they do not cluster as
one particle.
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Figure 3. Angular position (mod 2π) of every 50 particles grouped by their
natural frequencies. We can check that each group converges to a single
particle as the time goes.
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6. RG equation of Lohe sphere model with non-resonance condition

In this section, we will consider the Lohe sphere model with the non-resonance condition
and compute its RG equation up to 2nd order. The non-resonance condition excludes the
situations where the particles’ natural frequencies coincide.

6.1. The non-resonance condition. For computational simplicity, we will give additional
conditions that represents a non-resonance situation on the Lohe sphere model. The non-
resonance conditions are defined as :

(1) ΩiΩj is symmetric for any i, j. In other words, natural frequencies Ωi and Ωj

commutes in matrix multiplication. Additionally, eΩieΩj = eΩi+Ωj holds only when
this condition holds.

(2) Ωi − Ωj is nonsingular whenever i 6= j.
(3) Ωi−Ωj and Ωj−Ωk do not share any eigenvalues whenever i, j, k are distinct indices.

In 2-dimension, every skew-symmetric matrices are in form of

Ω =

(
0 ω
−ω 0

)
= ω

(
0 1
−1 0

)
, ω ∈ R.

If we rewrite the 2-dimension Lohe sphere model, it is equivalent to the Kuramoto model.
The equivalent non-resonance conditions of the Kuramoto model is :

(1) ωi − ωj is non-zero whenever i 6= j.
(2) ωi − ωj 6= ωj − ωk whenever i, j, k are distinct indicies.

6.2. First order RG equation of Lohe sphere model. The inhomogeneous term G1 is
given by

G1(x(0)) := g(x(0)).

From the definition x(0) = X(s)y,

G1(X(s)y)|i =
(
I − eΩisyiy

T
i e
−Ωis

) N∑
k=1

eΩksyk.

Since X(s)−1 = diag(e−Ω1s, e−Ω2s, ..., e−ΩNs),

[X(s)−1G1(X(s)y)]i = e−Ωis
(
I − eΩisyiy

T
i e
−Ωis

) N∑
k=1

eΩksyk

=
(
e−Ωis − yiyTi e−Ωis

) N∑
k=1

eΩksyk

=
(
I − yiyTi

) N∑
k=1

e(Ωk−Ωi)syk.

Now, if we integrate it,

[∫ t

X(s)−1G1(X(s)y)ds

]
i

=
(
I − yiyTi

)yit+
N∑
k 6=i

∫ t

e(Ωk−Ωi)sykds

 .(6.21)
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From this integration, we can build 1st order RG equation by calculating R1(y) and

h
(1)
t (y). Since e(Ωk−Ωi)t is an orthogonal matrix, thus being bounded,

R1(y)|i = lim
t→∞

1

t

[∫ t

X(s)−1G1(X(s)y)ds

]
i

=
(
I − yiyTi

)
yi

= yi
(
1− yTi yi

)
.

(6.22)

Furthermore, h
(1)
t (y) is calculated as :

h
(1)
t (y)|i = X(t)

[∫ t

X(s)−1G1(X(s)y)−R1(y)ds

]
i

= eΩit
(
I − yiyTi

) N∑
k 6=i

(Ωk − Ωi)
−1 e(Ωk−Ωi)tyk


=

N∑
k 6=i

(Ωk − Ωi)
−1 eΩktyk − eΩityi

N∑
k 6=i

〈
yi, (Ωk − Ωi)

−1 e(Ωk−Ωi)tyk

〉
.

(6.23)

Thus, 1st order RG equation is,

ẏi = εR1(y)|i =
κ

N
yi
(
1− ||yi||2

)
.(6.24)

Since y(0) = X(0)−1x(0), ||yi(0)|| = 1. Thus, y stays constant.

The 1st order approximation x̃ = X(t)y(t) + εh
(1)
t (y) of x is :

x̃(t)|i = eΩityi + εeΩit
(
I − yiyTi

) N∑
k 6=i

(Ωk − Ωi)
−1 e(Ωk−Ωi)tyk

 .(6.25)

We can easily check 1st order approximation also lies on the same sphere. However, since
1st order RG equation is zero, further calculation for higher order is needed for symmetry
of the stable manifold.

6.3. Second order RG equation of Lohe sphere model. First, the term dg
dx is :

dgi
dxj

=

{
I − xixTi , i 6= j

(I − xixTi )− (xTi
∑N

k=1 xk)I − xi
∑N

k=1 x
T
k , i = j.

The second order term of inhomogeneous part G2(x(0), x(1)) := dg
dx(x(0))x(1) is :

G2(x(0), x(1))|i

=

(
I − x(0)

i x
(0)
i

T
) N∑
k=1

x
(1)
k −

(
x

(1)
i x

(0)
i

T
+ x

(0)
i x

(1)
i

T
) N∑
k=1

x
(0)
k

=

N∑
k=1

x
(1)
k − x

(0)
i

N∑
k=1

〈
x

(0)
i , x

(1)
k

〉
− x(1)

i

N∑
k=1

〈
x

(0)
i , x

(0)
k

〉
− x(0)

i

N∑
k=1

〈
x

(1)
i , x

(0)
k

〉
.
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By substituting the results from first order computation,

G2(X(s)y, h(1)
s (y))|i

=

N∑
j=1

N∑
k 6=j

[
(Ωk − Ωj)

−1 eΩksyk − eΩjsyj

〈
yj , (Ωk − Ωj)

−1 e(Ωk−Ωj)syk

〉]

−
N∑
j=1

N∑
k 6=j

eΩisyi

〈
eΩisyi, (Ωk − Ωj)

−1 eΩksyk − eΩjsyj

〈
yj , (Ωk − Ωj)

−1 e(Ωk−Ωj)syk

〉〉

−
N∑
k 6=i

[
(Ωk − Ωi)

−1 eΩksyk − eΩisyi

〈
yi, (Ωk − Ωi)

−1 e(Ωk−Ωi)syk

〉] N∑
j=1

〈
eΩisyi, e

Ωjsyj
〉

−
N∑
j=1

N∑
k 6=i

eΩisyi

〈
eΩjsyj , (Ωk − Ωi)

−1 eΩksyk − eΩisyi

〈
yi, (Ωk − Ωi)

−1 e(Ωk−Ωi)syk

〉〉
,

which can be simplified as :

X(s)−1G2(X(s)y, h(1)
s (y))|i

=

N∑
j=1

N∑
k 6=j

[
(Ωk − Ωj)

−1 e(Ωk−Ωi)syk − e(Ωj−Ωi)syjy
T
j (Ωk − Ωj)

−1 e(Ωk−Ωj)syk

]

−
N∑
j=1

N∑
k 6=j

yiy
T
i

[
(Ωk − Ωj)

−1 e(Ωk−Ωi)syk − e(Ωj−Ωi)syjy
T
j (Ωk − Ωj)

−1 e(Ωk−Ωj)syk

]

−
N∑
j=1

N∑
k 6=i

(
I − yiyTi

)
(Ωk − Ωi)

−1 e(Ωk−Ωi)syky
T
j e

(Ωi−Ωj)syi

−
N∑
j=1

N∑
k 6=i

yiy
T
j

[
(Ωk − Ωi)

−1 e(Ωk−Ωj)syk − e(Ωi−Ωj)syiy
T
i (Ωk − Ωi)

−1 e(Ωk−Ωi)syk

]
.

To compute
[∫ t

X(s)−1G2(X(s)y, h
(1)
s (y))ds

]
i
, separate the summation into the four

cases : 1.(i 6= j, j 6= k, k 6= i), 2.(j 6= i, k = i), 3.(k 6= i, j = i), 4.(k = j 6= i). Inte-
gration by parts with the help of the fact that xTAx = 0 for any skew-symmetric A gives
the integration as :
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[∫ t

X(s)−1G2(X(s)y, h(1)
s (y))ds

]
i

=
∑
j 6=i

[
(Ωi − Ωj)

−1 yit+
1

2
yi

〈
yj , (Ωi − Ωj)

−1 e(Ωi−Ωj)tyi

〉2
]

−
∑
j 6=i

(
I − yiyTi

)
(Ωj − Ωi)

−1 e−(Ωi−Ωj)tyjy
T
j (Ωj − Ωi)

−1 e(Ωi−Ωj)tyi

+
∑
j 6=i

(
1− yTi yi

) (
I − 3yiy

T
i

)
(Ωj − Ωi)

−2 e(Ωj−Ωi)tyj

+
∑

i 6=j,j 6=k,k 6=i

(
I − yiyTi

)
(Ωk − Ωj)

−1 (Ωk − Ωi)
−1 e(Ωk−Ωi)tyk

−
∑

i 6=j,j 6=k,k 6=i
yiy

T
j (Ωk − Ωj)

−1 (Ωk − Ωi)
−1 e(Ωk−Ωj)tyk

+
∑

i 6=j,j 6=k,k 6=i
yi

〈
yj , (Ωi − Ωj)

−1 e(Ωi−Ωj)tyi

〉〈
yk, (Ωi − Ωk)

−1 e(Ωi−Ωk)tyi

〉
−

∑
i 6=j,j 6=k,k 6=i

∫ t

(Ωk − Ωi)
−1 e−(Ωi−Ωk)syky

T
j e

(Ωi−Ωj)syids

−
∑

i 6=j,j 6=k,k 6=i

(
I − yiyTi

) ∫ t

e−(Ωi−Ωj)syjy
T
j (Ωk − Ωj)

−1 e(Ωk−Ωj)sykds

From the Lemma 3.2, limt→∞
1
t

∫ t
e−AsV e−Bsds = 0 if A,B don’t have any common

eigenvalues. The matrix exponential eAt is unitary if A is skew-symmetric, hence bounded.
Thus,

lim
t→∞

1

t

[∫ t

X(s)−1G2(X(s)y, h(1)
s (y))ds

]
i

=
N∑
j 6=i

(Ωi − Ωj)
−1 yi.

Additionally, from

∂h
(1)
t (y)|i
∂yj

=

{
(Ωj − Ωi)

−1 eΩjt − eΩityiy
T
i (Ωj − Ωi)

−1 e(Ωj−Ωi)t (i 6= j)

eΩit
∑N

k 6=i

〈
yk, e

−(Ωk−Ωi)t (Ωk − Ωi)
−1 yi

〉
+ eΩityi

∑N
k 6=i y

T
k e
−(Ωk−Ωi)t (Ωk − Ωi)

−1 (i = j),

we have

X(s)−1
(
Dh1

s

)
y
R1(y)|i

= yi
(
1− yTi yi

) N∑
k 6=i

〈
yk, e

−(Ωk−Ωi)s (Ωk − Ωi)
−1 yi

〉

+ yi

N∑
k 6=i

yTk e
−(Ωk−Ωi)s (Ωk − Ωi)

−1 yi
(
1− yTi yi

)
+
∑
j 6=i

(
I − yiyTi

)
(Ωj − Ωi)

−1 e(Ωj−Ωi)syj
(
1− yTj yj

)
.
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This yields : [∫ t

X(s)−1
(
Dh1

s

)
y
R1(y)ds

]
i

= −yi
(
1− yTi yi

) N∑
k 6=i

〈
yk, e

−(Ωk−Ωi)t (Ωk − Ωi)
−2 yi

〉

− yi
N∑
k 6=i

yTk e
−(Ωk−Ωi)t (Ωk − Ωi)

−2 yi
(
1− yTi yi

)
−
∑
j 6=i

(
I − yiyTi

)
(Ωj − Ωi)

−2 e(Ωj−Ωi)tyj
(
1− yTj yj

)
.

Hence,

lim
t→∞

[
1

t

∫ t

X(s)−1
(
Dh1

s

)
y
R1(y)ds

]
i

= 0.

Thus, R2 is :

R2(y)|i =
N∑
k 6=i

(Ωi − Ωk)
−1 yi.(6.26)

While R2 is indeed a non-zero, it is impossible to obtain any useful results regarding
on the stable manifold. The 2nd order RG equation shows particles on the fixed orbit,
independent to each other. To obtain the stable invariant manifold of the original Lohe
model, we need to find a stable invariant manifold of the 2nd RG equation, which seems
impossible in this situation.

6.4. 2nd order RG approximate solution for Kuramoto model. In this subsection,
we restrict d = 1 and compute the approximate solution for Kuramoto model using 2nd
order RG equation. The 2nd order RG equation for Lohe model is :

ẏi = εR1(y)|i + ε2R2(y)|i

= εyi
(
1− ‖yi‖2

)
+ ε2

N∑
k 6=i

(Ωi − Ωk)
−1 yi.

With the yi starting on a unit circle, each yi always satisfies ‖yi‖ = 1 at any time. When
each yi is xi(0) at time 0, the solution for the 2nd order RG equation is,

yi(t) = eε
2
∑N

k 6=i(Ωi−Ωk)−1txi(0).

We already know h
(1)
t (y) :

h
(1)
t (y)|i =

N∑
k 6=i

(Ωk − Ωi)
−1 eΩktyk − eΩityi

N∑
k 6=i

〈
yi, (Ωk − Ωi)

−1 e(Ωk−Ωi)tyk

〉
.

Now compute h
(2)
t (y) using ‖yi‖ = 1 and the computation result in the section 3.4. When

Ωi = ωiρ, ρ =

(
0 −1
1 0

)
,
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X(t)−1h
(2)
t (y)|i

=
1

2
yi

∑
j 6=i

〈
yj , (Ωi − Ωj)

−1 e(Ωi−Ωj)tyi

〉2

−
∑
j 6=i

(
I − yiyTi

)
(Ωj − Ωi)

−1 e−(Ωi−Ωj)tyjy
T
j (Ωj − Ωi)

−1 e(Ωi−Ωj)tyi

+
∑

i 6=j,j 6=k,k 6=i

(
I − yiyTi

)
(Ωk − Ωj)

−1 (Ωk − Ωi)
−1 e(Ωk−Ωi)tyk

−
∑

i 6=j,j 6=k,k 6=i
yiy

T
j (Ωk − Ωj)

−1 (Ωk − Ωi)
−1 e(Ωk−Ωj)tyk

+
∑

i 6=j,j 6=k,k 6=i

1

(ωj − ωk)(2ωi − ωj − ωk)
e−(Ωi−Ωk)tyky

T
j e

(Ωi−Ωj)tyi

+
∑

i 6=j,j 6=k,k 6=i

1

(ωj − ωk)(2ωi − ωj − ωk)
(Ωi − Ωk)

−1 e−(Ωi−Ωk)tyky
T
j e

(Ωi−Ωj)t (Ωi − Ωj) yi

+
∑

i 6=j,j 6=k,k 6=i

(
I − yiyTi

) 1

(ωi − ωk)(2ωj − ωi − ωk)
e−(Ωi−Ωj)tyjy

T
j e

(Ωk−Ωj)tyk

+
∑

i 6=j,j 6=k,k 6=i

(
I − yiyTi

) 1

(ωi − ωk)(2ωj − ωi − ωk)
(Ωi − Ωj) e

−(Ωi−Ωj)tyjy
T
j (Ωk − Ωj)

−1 e(Ωk−Ωj)tyk.

Let’s define a new set of variables zi(t) := eΩityi(t). Then,

h̃
(1)
t (z(t))|i =

N∑
j 6=i

(ωi − ωj)−1 [ρzj + zi 〈zj , ρzi〉] ,

h̃
(2)
t (z)|i =

1

2
zi

∑
j 6=i

(ωi − ωj)−1 〈zj , ρzi〉

2

−
∑
j 6=i

(ωj − ωi)−2
[
ρzj 〈zj , ρzi〉+ zi 〈zj , ρzi〉2

]
+

∑
i 6=j,j 6=k,k 6=i

(ωk − ωj)−1 (ωk − ωi)−1 [zi 〈zi, zk〉+ zi 〈zj , zk〉 − zk]

+
∑

i 6=j,j 6=k,k 6=i

1

(ωj − ωk)(2ωi − ωj − ωk)
zk 〈zj , zi〉

−
∑

i 6=j,j 6=k,k 6=i

(ωi − ωj)
(ωj − ωk) (ωi − ωk) (2ωi − ωj − ωk)

ρzk 〈zj , ρzi〉

+
∑

i 6=j,j 6=k,k 6=i

1

(ωi − ωk)(2ωj − ωi − ωk)
[zj − zi 〈zi, zj〉] 〈zj , zk〉

−
∑

i 6=j,j 6=k,k 6=i

(ωi − ωj)
(ωi − ωk) (ωk − ωj) (2ωj − ωi − ωk)

[ρzj + zi 〈zj , ρzi〉] 〈zj , ρzk〉 .
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Thus, the approximated solution using 2nd RG equation is

x̃(t)|i = zi(t) + εh̃
(1)
t (z)|i + ε2h̃

(2)
t (z)|i,

where

zi(t) = e[ωi−ε2
∑N

k 6=i(ωi−ωk)−1]ρtxi(0).

7. Conclusion

The Lohe sphere model or the Kuramoto model are mathematical models that describes
the synchronization or clustering phenomenon. However, due to its complexity, the conver-
gence analysis is a key question in these systems. In this paper, we applied the Renormal-
ization Group method for the convergence analysis. The Renormalization Group method
provides the technique to compute the approximated solution for the given differential equa-
tion system. The approximated solution by RG method does not contain the secular term,
which is a term that anomaly diverges when the time goes to infinity. Such characteristic
of RG method provides two advantages, a approximated solution for a longer time interval,
and a symmetry of stability on invariant manifolds between RG system and original system.

With the clustering conditions, we were able to find the stable manifold using the first
order RG equation. Generalizing the results from the work [5], we showed that the manifold
corresponding to the clustering or complete synchronization on the groups of particles with
identical natural frequency matrices is indeed the stable manifold. In the future studies,
we plan to work on the symmetry of convergence radius of the stable manifolds, leading
to the convergence conditions on the Lohe sphere model or the Kuramoto model using the
convergence radius of the stable manifolds of RG equations.

We also provided the results of 2nd order RG method with the non-resonance conditions.
While the 2nd order RG equation did not provide significant information about stable man-
ifolds of the Lohe sphere model, we successfully computed the 2nd order RG approximated
solution for the Kuramoto model. To analyze general synchronization behavior using stable
manifolds of RG equation, it seems more conditions, rather than non-resonance condition,
are required, focusing on specific instances of the Lohe sphere model. We defer such work
in the future studies.
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Appendices

Following is the code written for the simulations in section 5.

import numpy as np

import matp lo t l i b . pyplot as p l t

de f Kuramoto gen (N, kappa , omega ) :

de f f ( t , theta ) :

dtheta = np . z e ro s (N)

f o r j in range (N) :

dtheta += np . s i n ( theta [ j ] − theta )

dtheta = omega + kappa / N ∗ dtheta

re turn dtheta

# end f

re turn f

N=50

kappa = 0.05

omega = np . concatenate (

( 0 . 0 5 ∗ np . ones ( 7 ) ,

0 .07 ∗ np . ones (12 ) ,

0 .08 ∗ np . ones (11 ) ,

0 .03 ∗ np . ones ( 9 ) ,

0 .02 ∗ np . ones ( 1 1 ) )

)

c l u s t e r e d = Kuramoto gen (N, kappa , omega )

n = 40000

h = 0.01

# f : funct ion , ( x 0 , y 0 ) : i n i t i a l cond i t ion , s tep s i z e h , i t e r a t i o n n

de f RK4( f , t 0 , theta 0 , n , h ) :

t = [ t 0 ]

theta = [ the ta 0 ]

f o r k in range (1 , n+1) :

t . append ( t 0 + h ∗ k )
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k 1 = f ( t [ k−1] , theta [ k−1])

k 2 = f ( t [ k−1] + 0 .5 ∗ h , theta [ k−1]+0.5∗h∗ k 1 )

k 3 = f ( t [ k−1] + 0 .5 ∗ h , theta [ k−1]+0.5∗h∗ k 2 )

k 4 = f ( t [ k−1] + h , theta [ k−1] + h ∗ k 3 )

theta . append ( theta [ k−1] + h ∗ ( k 1 + 2∗ k 2 + 2∗ k 3 + k 4 )/6)

re turn t , theta

# end RK4

t , theta = RK4( c lu s t e r ed , 0 , np . random . uniform (0 , 5 , N) , n , h )

p l t . f i g u r e ( f i g s i z e =(12 ,4))

p l t . p l o t ( t , theta )

p l t . x l a b e l (” time ”)

p l t . y l a b e l (” Angular p o s i t i o n ”)

theta = np . mod( theta , np . p i )

f i g , axs = p l t . subp lo t s (5 , f i g s i z e =(12 ,4 ∗ 5) )

axs [ 0 ] . p l o t ( t , theta [ : , 0 : 7 ] )

axs [ 1 ] . p l o t ( t , theta [ : , 7 : 1 9 ] )

axs [ 2 ] . p l o t ( t , theta [ : , 1 9 : 3 0 ] )

axs [ 3 ] . p l o t ( t , theta [ : , 3 0 : 3 9 ] )

axs [ 4 ] . p l o t ( t , theta [ : , 3 9 : 5 0 ] )

f o r ax in axs . f l a t :

ax . s e t ( x l a b e l =’time ’ , y l a b e l =’Angular p o s i t i o n with modulus by 2 pi ’ )

p l t . f i g u r e ( f i g s i z e =(12 ,4))

p l t . p l o t ( t , theta [ : , [ 0 , 7 , 1 9 , 30 , 3 9 ] ] )

p l t . x l a b e l (” time ”)

p l t . y l a b e l (” Angular p o s i t i o n ”)
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