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Fixed Point Iteration

Definition (Fixed Point Iteration)

For a given operator 𝕋, we call an iterative method

xk+1 = 𝕋xk , k = 0, 1, 2, · · ·

as Fixed Point Iteration, or FPI.

Theorem (Banach-Fixed Point Theorem)

When (X , d) is a non-empty complete metric space and an operator

𝕋 : X → X is L-Lipschitz with L < 1, then

• there exists an unique fixed point of 𝕋, x∗ = 𝕋x∗,

• FPI with 𝕋 converges to x∗, limk→∞ xk = x∗.
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Fixed Point Iteration

Remark. However, in most of FPI -based convex optimization solvers,

the operator is only guaranteed to be a 1-Lipschitz.

Definition (θ-averaged operator)

An operator 𝕋 is θ-averaged if it can be described as

𝕋 = (1− θ)𝕀+ θℂ, θ ∈ (0, 1], ℂ is 1-Lipschitz.

The set of fixed points Fix𝕋 coincides with Fixℂ.

Theorem (Averaged Fixed Point Theorem)

When H is a non-empty Real Hilbert space and an operator 𝕋 : H → H
is θ-averaged with θ ∈ (0, 1) and has a nonempty fixed point, Fix𝕋 ̸= ∅,
then

lim
k→∞

xk = x∗, x∗ ∈ Fix𝕋.
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Fixed Point Iteration - Inconsistent case

Remark. Fix𝕋 = ∅ is possible when 𝕋 is 1-Lipschitz or θ-averaged

mapping. For example, consider a translation mapping.

Theorem (Pazy, 1971)

When H is a non-empty Real Hilbert space and an operator 𝕋 : H → H
is 1-Lipschitz mapping, then

lim
k→∞

xk

k
= −v,

where v is a minimal norm vector of closed convex set range (𝕀− 𝕋).

• We call v as an infimal displacement vector of 𝕋.

• We call xk/k as a normalized iterate of FPI by 𝕋.

Remark. If Fix𝕋 ̸= ∅, then v = 0.
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RC-FPI

Definition (Classical RC-FPI)

Partition Rn into a m block coordinates and write a vector in Rn as

x = (x1, x2, · · · , xm).

Consider an operator 𝕋 on Rn and define a randomized operator 𝕋i as:

𝕋x = ((𝕋x)1, (𝕋x)2, · · · , (𝕋x)m), 𝕋ix = (x1, x2, · · · , (𝕋x)i , · · · , xm).

A randomized update by 𝕋ik with IID ik ’s is called RC-FPI, short for

Randomized Coordinate Fixed Point Iteration:

xk+1 = 𝕋ik x
k , i0, i1, · · · iid∼ Uniform(m).
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Convergence of RC-FPI

Theorem (Convergence of RC-FPI)

When an operator 𝕋 : Rn → Rn is θ-averaged with θ ∈ (0, 1) and has a

nonempty fixed point, Fix𝕋 ̸= ∅, then with probability 1,

lim
k→∞

xk = x∗, x∗ ∈ Fix𝕋.

Remark. Many optimization solvers use (RC-FPI) due to its faster

convergence speed. Faster speed is not guaranteed but it is not slower if

the operator is coordinate friendly.
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Main Goal of the Paper

Question. What is the asymptotic behavior of RC-FPI when Fix𝕋 = ∅?

Answers. Here’s the results this work has found for the first time.

• Convergence result analogous of Pazy’s work, both in L2 and a.s.:

lim
k→∞

xk

k
= −αv.

• Upper bound of the variance analogous to the CLT:

lim sup
k→∞

kVar

(
xk

k

)
≤
(
α− α2

)
∥v∥2 .

Here, α is a probability of an update for each coordinate.
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Main Goal of the Paper

Example of (RC-FPI), 100 iterations, ran 100 times.
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RC-FPI setting: Underlying space

Let’s extend RC-FPI to more general setting.

Underlying space:

• The underlying space is a real Hilbert space H, consisted of m real

Hilbert spaces.

H = H1 ⊕H2 ⊕ . . .Hm.

• An element u ∈ H can be decomposed into m blocks as

u = (u1, u2, . . . , um) , ui ∈ Hi ,

and ui is called the ith block coordinates of u.
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RC-FPI setting: Underlying space

• The Hilbert space H has its induced norm and inner product as

∥x∥2 =
m∑
i=1

∥xi∥2i , ⟨x , y⟩ =
m∑
i=1

⟨xi , yi ⟩i ,

for all x , y ∈ H, where ∥ · ∥i and ⟨·, ·⟩i are from Hi .

• Consider a linear, bounded, self-adjoint and positive definite operator

M : H → H. The M-norm and M-inner product of H are defined as

∥x∥M =
√

⟨x ,Mx⟩, ⟨x , y⟩M = ⟨x ,My⟩,

• The M-variance of a random variable X with the domain H as

VarM [X ] = E[∥X∥2M ]− ∥E[X ]∥2M .
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RC-FPI setting: Randomized operator

Remark. When an operator ℂ : H → H is 1-Lipschitz of a real Hilbert

space H, then 𝕊 = 𝕀− ℂ is (1/2)-cocoersive operator:

⟨x − y ,𝕊x − 𝕊y⟩ ≥ 1

2
∥𝕊x − 𝕊y∥2 , ∀x , y ∈ H.

Consider a θ-averaged 𝕋 = (1− θ)𝕀+ θℂ, then we can rewrite 𝕋 as

𝕋 = 𝕀− θ𝕊, 𝕊 is (1/2)-cocoersive.

For (1/2)-cocoercive operator 𝕊 = θ−1(𝕀− 𝕋), define 𝕊i : H → H as:

𝕊 =
m∑
i=1

𝕊i , 𝕊i : H → 0× 0× · · · × Hi × · · · × 0.
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RC-FPI setting: Randomized operator

Randomized operator: Consider a θ-averaged operator 𝕋 : H → H.

• For a selection vector I ∈ [0, 1]m, define 𝕊I ,𝕋I : H → H as:

𝕊I =
m∑
i=1

Ii𝕊i , 𝕋I = 𝕀− θ𝕊I .

Randomized vector: Similarly, for u ∈ H, define uI as:

uI =
m∑
i=1

Iiui , u =
m∑
i=1

ui , ui ∈ 0× 0× · · · × Hi × · · · × 0.
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RC-FPI setting

Coefficients:

• α: expected amount of update in each coordinate

Definition (Uniform expected step-size condition)

Uniform expected step-size condition is satisfied when I is randomly

sampled from a distribution on [0, 1]m that satisfies:

EI [I] = α1.

• β: depends on the distribution of I and the choice of the norm.

EI

[
∥uI∥2M

]
≤ β ∥u∥2M , ∀ u ∈ H.
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RC-FPI setting

Lemma

Let’s consider the norm of H as ∥ · ∥-norm, i.e. M is the identity map.

If I satisfies the uniform expected step-size condition, then we can say:

β ≤ α.

Thus, we can choose α as a value of β.

Remark. β always satisfies β ≥ α2 regardless of the choice of M-norm.

However, smaller β is preferred.

Remark. We develop the theory with the general M-norm so that the

theory can be extended to non-orthogonal basis.
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RC-FPI setting

Definition (RC-FPI)

The randomized coordinate fixed-point iteration (RC-FPI) is:

xk+1 = 𝕋Ik xk , k = 0, 1, 2, . . . , (RC-FPI)

where I0, I1, . . . is sampled IID and x0 ∈ H is a starting point.

Remark. With uniform expected step-size condition, define �̄� : H → H:

�̄�x = EI [𝕋Ix ] , ∀x ∈ H.

Equivalently, �̄� = 𝕀− αθ𝕊. We can define a FPI by �̄�:

zk+1 = �̄�zk , k = 0, 1, 2, . . . . (FPI by �̄�)
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Convergence of Normalized iterates

Goal. The normalized iterate of (RC-FPI) converges to −αv:

xk

k
L2

→ −αv,
xk

k
a.s.→ −αv.

both in L2 and almost surely.
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Inequality on expectation of randomized operator

Here’s an inequality we will use repeatedly throughout the proofs.

Lemma

Consider the situation:

• 𝕋 : H → H be θ-averaged respect to ∥·∥M with θ ∈ (0, 1].

• I satisfies the uniform expected step-size condition.

Then for any x , z ∈ H,

E
I

[∥∥𝕋Ix − �̄�z
∥∥2
M

]
≤ ∥x − z∥2M

+ θ2
(
β − α2

)
∥𝕊x∥2M − αθ (1− αθ) ∥𝕊x − 𝕊z∥2M .

Notation. We will refer this inequality as One-step inequality.
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Inequality on expectation of randomized operator

Proof.

First, substitute 𝕋I = 𝕀− θ𝕊I and �̄� = 𝕀− αθ𝕊 at EI

[∥∥𝕋Ix − �̄�z
∥∥2
M

]
.

Then, use (1/2)-cocoercive property of the operator 𝕊.

E
[∥∥𝕋Ix − �̄�z

∥∥2
M

]
= ∥x − z∥2M + θ2E

[
∥𝕊Ix − α𝕊z∥2M

]
− 2αθ ⟨x − z ,𝕊x − 𝕊z⟩M

≤ ∥x − z∥2M + θ2E
[
∥𝕊Ix − α𝕊z∥2M

]
− αθ ∥𝕊x − 𝕊z∥2M .

Finally, apply the following inequality to conclude the proof.

E
[
∥𝕊Ix − α𝕊z∥2M

]
= E

[
∥(𝕊Ix − α𝕊x) + α (𝕊x − 𝕊z)∥2M

]
≤
(
β − α2

)
∥𝕊x∥2M + α2 ∥𝕊x − 𝕊z∥2M .
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L2 convergence

Theorem (L2 convergence of normalized iterate)

Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥-norm with θ ∈ (0, 1].

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition.

Let x0, x1, x2, . . . be the iterates of (RC-FPI). Then

xk

k
L2

→ −αv

as k → ∞, where v is the infimal displacement vector of 𝕋.

Remark. We will prove for the M-norm with the assumption:

α ≥ θβ.
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Proof of L2 convergence

As mentioned, we will alternatively prove the following result.

Lemma

Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1].

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition and β satisfies that β ≤ α/θ.

Let x0, x1, x2, . . . be the iterates of (RC-FPI) and let z0, z1, z2, . . . be

the iterates of (FPI by �̄�). Then,

E

[∥∥∥∥xkk − zk

k

∥∥∥∥2
M

]
≤ 1

k2

∥∥x0 − z0
∥∥2
M
+

1

k
A,

where v is the infimal displacement vector of 𝕋 and A is a constant

A = (1− αθ)
[
2
√
αθ
∥∥𝕊x0∥∥

M

∥∥𝕊z0∥∥
M
− α

θ
∥v∥2M

]
.
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Proof of L2 convergence

Abstract Proof.

First take a full expectation on One-step inequality with zk , xk .

With the next two lemmas, we can prove that A is an uniform upper

bound of full expectation on the last two terms of One-step inequality:

θ (θβ − α)
∥∥𝕊xk−1

∥∥2
M
+ αθ (1− αθ)

[
2
〈
𝕊xk−1,𝕊zk−1

〉
M
−
∥∥𝕊zk−1

∥∥2
M

]
.

Thus, we get

E
[∥∥xk − zk

∥∥2
M

]
≤ E

[∥∥xk−1 − zk−1
∥∥2
M

]
+ A.

Apply above inequality repeatedly, divide by k2 to conclude the proof.

Remark. To prove the main theorem of L2 convergence, apply Pazy’s

theorem on zk to conclude the proof.
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Proof of L2 convergence

First, let’s bound
∥∥𝕊zk∥∥

M
independent from k .

Lemma

𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and 𝕊 = θ−1(𝕀− 𝕋).

Let z0, z1, z2, · · · to be the iterates of (RC-FPI) with starting point z0.

Then, ∥∥𝕊zk∥∥
M

≤
∥∥𝕊zk−1

∥∥
M

≤ · · · ≤
∥∥𝕊z0∥∥

M
.

Proof.

With 𝕋z − z = −θ𝕊z and 𝕊 being (1/2)-cocoercive operator,

θ ⟨𝕊𝕋z − 𝕊z ,−𝕊z − 𝕊𝕋z⟩M ≥ (1− θ) ∥𝕊𝕋z − 𝕊z∥2M ≥ 0,

Thus ∥𝕊𝕋z∥M ≤ ∥𝕊z∥M holds for any z ∈ H, concluding the proof.
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Proof of L2 convergence

Next, let’s bound
∥∥E [𝕊xk]∥∥

M
independent from k .

Lemma

𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and 𝕊 = θ−1(𝕀− 𝕋). Let

x0, x1, x2, · · · to be the iterates of (RC-FPI) with starting point x0.

Then, ∥∥E [𝕊𝕋Ik . . .𝕋I0x0
]∥∥

M
≤ β1/2α−1

∥∥𝕊x0∥∥
M

holds if I0, , I1, . . . , Ik follow IID distribution with the uniform expected

step-size condition with α ∈ (0, 1] and β satisfies β ≤ α/θ.
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Proof of L2 convergence

Proof.

With the same distribution of I, it is possible to show

EI,X ,Y

[
∥𝕋IX − 𝕋IY ∥2M

]
≤ EX ,Y

[
∥X − Y ∥2M

]
.

for any random variable X ,Y on H. (∵ β ≤ α/θ and (1/2)-cocoersivity.)

Apply above inequality repeatedly and use Jensen’s inequality:

∥E [𝕋Ik . . .𝕋I1X − 𝕋Ik . . .𝕋I1Y ]∥2M ≤ E
[
∥X − Y ∥2M

]
.

Now set up X ,Y as X = 𝕋I0x0,Y = x0. Shift the index using IID,∥∥αE [θ𝕊xk]∥∥
M

=
∥∥E [(𝕋Ik − 𝕀)𝕋Ik−1 . . .𝕋I0x0

]∥∥
M

≤ β1/2
∥∥θ𝕊x0∥∥

M
.
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Almost sure convergence

Theorem (Almost sure convergence of normalized iterate)

Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥-norm with θ ∈ (0, 1).

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition.

Let x0, x1, x2, . . . be the iterates of (RC-FPI). Then

xk

k
a.s.→ −αv

as k → ∞.

Remark. We will prove for the M-norm with the assumption:

α > θβ.
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Proof of almost sure convergence

As mentioned, we will alternatively prove the following result.

Lemma

Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1].

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition and β satisfies that β < α/θ.

Let x0, x1, x2, . . . be the iterates of (RC-FPI).

Then, xk/k is strongly convergent to −αv in probability 1, i .e.

xk

k
a.s.→ −αv

as k → ∞, where v is the infimal displacement vector of 𝕋.
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Almost supermartingale convergence theorem

Lemma (Robbins-Siegmund quasi-martingale theorem)

F1 ⊂ F2 ⊂ . . . is a sequence of sub-σ-algebras of F where (Ω,F ,P) is a

probability space. When Xk , bk , τk , ζk are non-negative Fk -random

variables such that

E [Xk+1 | Fk ] ≤ (1 + bk)Xk + τk − ζk ,

limk→∞ Xk exists and is finite and
∑∞

k=1 ζk < ∞ almost surely if∑∞
k=1 bk < ∞,

∑∞
k=1 τk < ∞.
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Proof of almost sure convergence

Abstract Proof.

The idea is to apply almost supermartingale theorem.

To do this, we first need to make an upper bound of the last two terms in

One-step inequality without taking full expectation.

− αθ (1− αθ) ∥𝕊x − 𝕊z∥2M + θ2
(
β − α2

)
∥𝕊x∥2M

= −θ (α− βθ)

∥∥∥∥𝕊x − α− α2θ

α− βθ
𝕊z

∥∥∥∥2
M︸ ︷︷ ︸

≤0

+
αθ2(1− αθ)(β − α2)

α− βθ︸ ︷︷ ︸
=:B≥0

∥𝕊z∥2M

≤ B ∥𝕊z∥2M .

Now consider a sequence z0, z1, z2, · · · of (FPI by �̄�).
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Proof of almost sure convergence

Abstract Proof continued.

From
∥∥𝕊zk∥∥

M
≤
∥∥𝕊z0∥∥

M
,

EIk

[∥∥∥∥xkk − zk

k

∥∥∥∥2
M

| Fk−1

]
≤
∥∥∥∥ xk−1

k − 1
− zk−1

k − 1

∥∥∥∥2
M

+
B

k2

∥∥𝕊z0∥∥2
M
.

Since
∑

B
k2

∥∥𝕊z0∥∥2
M

< ∞, apply the R-S quasi-martingale theorem.

Then,
∥∥∥ xk

k − zk

k

∥∥∥2
M

converges almost surely to some random variable.

With Fatou’s lemma and L2 convergence,

E

[
lim

k→∞

∥∥∥∥xkk − zk

k

∥∥∥∥2
M

]
≤ lim

k→∞
E

[∥∥∥∥xkk − zk

k

∥∥∥∥2
M

]
= 0.

Thus, with probability 1, limk→∞

∥∥∥ xk

k − zk

k

∥∥∥2
M

= 0.
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Variance of Normalized iterates

Goal. Here’s the main result we will prove in this section.

Theorem

Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥M with θ ∈ (0, 1].

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition and β satisfies that β < α/θ.

Let x0, x1, x2, . . . be the iterates of (RC-FPI).

(a) If v ∈ range (𝕀− 𝕋), then

lim sup
k→∞

kE

[∥∥∥∥xkk + αv

∥∥∥∥2
M

]
≤ (β − α2) ∥v∥2M .

(b) In general, regardless of whether v is in range (𝕀− 𝕋) or not,

lim sup
k→∞

kVarM

(
xk

k

)
≤ (β − α2) ∥v∥2M .
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Variance of Normalized iterates

Example. Before moving on to the proofs, here’s check some examples.

Ex 1. Equality holds: Consider the translation operator 𝕋(x) = x − v.

Choose the norm as ∥·∥ and consider the distribution of I as an uniform

distribution on standard basis.

When x0, x1, x2, . . . are the iterates of (RC-FPI) with 𝕋, then

kVar

(
xk

k

)
= α (1− α) ∥v∥2

for k = 1, 2, . . . , and the variance bound holds with equality.

Remark. In this scenario, each step is independent to each other.

The result is identical to the result of Central Limit Theorem.
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Variance of Normalized iterates

Ex 2. Strict inequality Define 𝕋 : R2 → R2 as 𝕋 = 𝕀− Projx+y=1, or

𝕋 : (x , y) 7→
(
x − 1 + x − y

2
, y − 1 + y − x

2

)
,

which is 1/2-averaged and has the infimal displacement vector (1/2, 1/2).

When (x0, y0), (x1, y1), (x2, y2), . . . are the iterates of (RC-FPI) with 𝕋,

lim sup
k→∞

kVarM

((
xk , yk

)
k

)
=

1

24
.

On the other hand, the right hand side of the inequality is

α (1− α) ∥v∥2 = 1

2

(
1− 1

2

)
∥v∥2 = 1

8
.

Remark. This is also an example that limk→∞ E
[∥∥θ𝕊xk∥∥2

M

]
̸= ∥v∥2M .
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Variance of Normalized iterates
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Simulation of prior example, 15 iterations, ran 10 times. 40



Idea of proof

Idea of proof.

First generate a sequence z0, z1, z2, · · · as (FPI by �̄�) with z0 = z .

From the One-step inequality, with full expectation,

E

[
k

∥∥∥∥xkk − zk

k

∥∥∥∥2
M

]
≤ 1

k

∥∥x0 − z0
∥∥2
M
+ E

 1

k

k−1∑
j=0

U j


where U0,U1,U2, . . . is a sequence of random variables:

Uk =− α
(
θ−1 − α

) ∥∥θ𝕊xk − θ𝕊zk
∥∥2
M
+ θ2

(
β − α2

) ∥∥𝕊xk∥∥2
M
.

The key of this proof is to bound Uk asymptotically as k → ∞,

Uk ≲ (β − α2) ∥v∥2M .

Then due to Cesàro mean we may conclude the proof.
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Proof of Variance of Normalized iterates

Abstract Proof.

1. Choose z with ∥v∥M ≤
∥∥θ𝕊zk∥∥

M
≤ ∥θ𝕊z∥M ≤ ∥v∥M + ϵ.

From convexity of range set, this gives v ≃ θ𝕊zk ≃ θ𝕊z .

2. 𝕊xk − 𝕊z and 𝕊z are nearly orthogonal for after sufficient iteration:∥∥θ𝕊xk∥∥2
M

≃
∥∥θ𝕊xk − θ𝕊z

∥∥2
M
+ ∥θ𝕊z∥2M .

Nearly orthogonal property will be handled in the next lemma.

3. Then we use this to build an inequality of a form:

Uk ≲ −θ−1 (α− βθ)
∥∥θ𝕊xk − v

∥∥2
M︸ ︷︷ ︸

≤0

+
(
β − α2

)
∥v∥2M︸ ︷︷ ︸

RHS of the theorem

,

as k → ∞.
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Proof of Variance of Normalized iterates

Abstract Proof.

To be precise, with probability 1, when x0, x1, x2, · · · are generated,

for δ ∈ (0, π/2) and z ∈ H, there exists Nδ,z s.t. for all k > Nδ,z ,

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z ,

where τ̃δ,z depends only on δ, z and τ̃δ,z → 0 as δ → 0 and θ𝕊z → v.

1. Since Nδ,z also depends on {xk}, apply Cesàro mean:

lim sup
k→∞

 1

k

k−1∑
j=0

U j

 ≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z .

2. Apply expectation, then use Reverse Fatou’s lemma

(since U j ≤ B ∥𝕊z∥2M holds) to bound the variance term.

3. Finally, take the limit δ → 0 and θ𝕊z → v to conclude the proof.
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Nearly orthogonal

Lemma (Nearly orthogonal)

Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥M with θ ∈ (0, 1].

Consider a sequence y0, y1, y2, . . . in H such that its normalized iterate

converges strongly to −γv for some γ > 0:

lim
k→∞

yk

k
= −γv.

Then, for any δ ∈ (0, π/2) and z ∈ H, ∃Nδ,z ∈ N s.t., ∀k > Nδ,z ,〈
v,𝕊yk − 𝕊z

〉
M

≤ ∥v∥M
∥∥𝕊yk − 𝕊z

∥∥
M
sin δ.

The proof is quite technical. We replace the proof with a figure

describing the dynamics, while the full proof is available in the paper.
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Nearly orthogonal

Idea of proof.
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Relation between variance and range set

Remark. Throughout observations, we could check that there was a

weak relation between the shape of the range set range (𝕀− 𝕋) near v

and the variance value.

0 200 400 600 800 1000
iteration count k

0.4

0.6

0.8

1.0

1.2

1.4

k
V̂

ar
( xk k

) α(1−α)‖v‖2

A

B

C

θ−1v

Sz

δ

We interpret such phenomenon happen when the following inequality can

be non-tight even after sufficient iterations.

−θ−1 (α− βθ)
∥∥θ𝕊xk − v

∥∥2
M

≤ 0
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Infeasibility Detection

Goal. Infeasibility detection method for (RC-FPI) by hypothesis testing.

Theorem

Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1].

Consider a null hypothesis of ∥v∥M ≤ δ with small δ satisfying αδ < ϵ.

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition and β satisfies that β < α/θ.

Let x0, x1, x2, . . . be the iterates of (RC-FPI). Then

P
(∥∥∥∥xkk

∥∥∥∥
M

≥ ε

)
≲

(
β − α2

)
δ2

k(ε− αδ)2

as k → ∞, where v is the infimal displacement vector of 𝕋.
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Infeasibility Detection

Therefore, for any statistical significance level p ∈ (0, 1), the test∥∥∥∥xkk
∥∥∥∥
M

≥ ε

with

k ≳

(
β − α2

)
δ2

p (ε− αδ)2

can reject the null hypothesis and conclude that ∥v∥M > δ, which implies

that the problem is inconsistent.
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Proof of infeasibility detection

Proof.

Here, we provide a simpler case where v ∈ range (𝕀− 𝕋).

By the triangle inequality, Markov inequality, and the variance theorem

we just proved, under the null hypothesis,

P
(∥∥∥∥xkk

∥∥∥∥
M

≥ ε

)
≤ P

(∥∥∥∥xkk + αv

∥∥∥∥
M

≥ ε− αδ

)
≤ 1

(ε− αδ)2
E

[∥∥∥∥xkk + αv

∥∥∥∥2
M

]

≲

(
β − α2

)
δ2

k(ε− αδ)2
,

as k → ∞. The full proof use the inequality about the variance.
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Review

Review.

In general ∥·∥M -norm,

• if α ≥ θβ,
xk

k
L2

→ −αv.

• If α > θβ,
xk

k
a.s.→ −αv,

and lim supk→∞ kVarM
(

xk

k

)
≤ (β − α2) ∥v∥2M .

When we use ∥·∥-norm, we can choose β = α. Thus the conditions

α ≥ θβ and α > θβ are replaced with θ ∈ (0, 1] and θ ∈ (0, 1).

Remark. However, optimization methods such as (PG-EXTRA) uses

averaged operator that’s 1-Lipschitz in ∥·∥M -norm with M ̸= 𝕀.
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Extension to Nonorthogonal basis

Now let’s consider an update with nonorthogonal basis.

• The underlying space H with extra H0 block, making H as

H = H0 ⊕H1 ⊕H2 ⊕ . . .Hm.

• Consider two subspaces U1 and U2 of H as

U1 = H0 × 0× 0× · · · × 0, U2 = 0×H1 ×H2 × · · · × Hm.

• We assume that with M-inner product of H,

• Block components in U2 are orthogonal.

• U1 and U2 need not be orthogonal.

Question. When are the conditions α ≥ θβ and α > θβ satisfied?
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Friedrichs angle

Definition (Friedrichs angle)

The cosine of the Friedrichs angle cF between two subspaces U1 and U2

is defined as a smallest value among c ≤ 1 such that satisfies:

|⟨u1, u2⟩M | ≤ c ∥u1∥M ∥u2∥M ∀ u1 ∈ U1, u2 ∈ U2.

Remark. When M = 𝕀, cF = 0.
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Extension to Nonorthogonal basis

Lemma

Suppose the subspaces U1,U2 of H with U1 ∩ U2 = {0} satisfy:

|⟨u1, u2⟩M | ≤ cF ∥u1∥M ∥u2∥M , cF ≤
√

1− θ

1− αθ

for any u1 ∈ U1, u2 ∈ U2.

Then, there exists β ≥ 0 such that βθ ≤ α and

EI [uI ] = αu, EI

[
∥uI∥2M

]
≤ β ∥u∥2M .

If cF <
√

1−θ
1−αθ , then there exists β with βθ < α.

Remark. Setting β as β = α2 + α−α2

1−c2F
proves the lemma.
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Extension to Nonorthogonal basis

Thus, in this case of (RC-FPI),

Extension to nonorthogonal basis.

In general ∥·∥M -norm,

• if cF ≤
√

1−θ
1−αθ ,

xk

k
L2

→ −αv.

• If cF <
√

1−θ
1−αθ ,

xk

k
a.s.→ −αv,

and lim supk→∞ kVarM
(

xk

k

)
≤ (β − α2) ∥v∥2M .

Remark. β value is guaranteed to be at most β = α2 + α−α2

1−c2F
.
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Application in PG-EXTRA

Definition (PG-EXTRA)

Consider the convex optimization problem

minimize
x∈Rd

m∑
i=1

fi (x),

where fi : Rd → R is closed, convex, and proper function.

The decentralized algorithm PG-EXTRA is a iterative solver:

xk+1
i = Proxτ fi

(∑m
j=1Wijx

k
i − wk

i

)
wk+1
i = wk

i +
1

2

(
xki − ∑m

j=1Wijx
k
j

) (PG-EXTRA)
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Application in PG-EXTRA

Remark. When using (PG-EXTRA), it is computed with m agents.

W is a matrix representing the connection between agents, satisfying:

• W is symmetric m by m matrix.

• Wij = 0 if i ̸= j and agents i and j are not connected.

• N(I −W ) = span(1) and 1 = λ1 > max{|λ2|, · · · , |λm|}.

Each agent i handles xi and wi value. At each iteration, only

communication between connected agents are required.
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Application in PG-EXTRA

A randomized coordinate-update version of (PG-EXTRA) performs:

• randomly chooses i among 1, 2, . . . ,m to update xki ,

• every w1,w2, . . . ,wm gets updated at each iterations.

RC-PG-EXTRA.

while Not converged do

Sample: I
for i such that Ii ̸= 0 do

∆xi = Proxτ fi ([Wx ]i − wi )− xi
Update: xi = xi + Ii∆xi
for j ∈ Ni ∪ {i} do

Send: ∆xi From ith agent to jth agent.

[Wx ]j = [Wx ]j +Wij∆xi
end for

end for

end while
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Application in PG-EXTRA

Corollary

Assume I0, I1, . . . is sampled IID from a distribution satisfying the

uniform expected step-size condition. Perform (RC-PG-EXTRA).

If the minimum eigenvalue of the mixing matrix W ∈ Rm satisfies:

λmin(W ) > − α

2− α
,

then the results of previous theorems holds:

xk

k
a.s.→ −αv, lim sup

k→∞
kVarM

(
xk

k

)
≤ (β − α2) ∥v∥2M .
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Application in PG-EXTRA

Additionally, here is the infimal displacement vector of (PG-EXTRA).

Lemma

The infimal displacement vector v = (v1, . . . , vm) of (PG-EXTRA) is

vi =

[
τ
m

∑m
j=1 gj

− 1
2

(
yi −

∑m
j=1 Wijyj

)]

for i = 1, . . . ,m, where (y1, y2, . . . , ym) and (g1, g2, . . . , gm) are

argmin
y1,y2,...ym∈Rd

gj∈∂fj (yj ),1≤j≤m

∥∥∥∥∥∥ τm
m∑
j=1

gj

∥∥∥∥∥∥
2

+
1

2

m∑
i,j=1

Wij ∥yi − yj∥2 .
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Application in PG-EXTRA

Remark. We observed faster convergence to the infimal displacement

vector when randomized, in the inconsistent case of (PG-EXTRA). Here,

the notion of faster regards on the communication count, not iterations.

Fully connected agents

2

40
39

3
4

38

1…

Abnormal
agent

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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10-2

10-1

100

‖1 k
( x

k
,u

k
)
+
α
v
‖2

RC-PG-EXTRA
PG-EXTRA

(Left) Network used in our experiment, consisting of m = 40 agents, with

agents 2, . . . , 40 densely connected.

(Right) Graph of
∥∥(xk , uk

)
/k + αv

∥∥2
against the communication count for

(PG-EXTRA) and (RC-PG-EXTRA).
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