Quantum Teleportation using
 Quantum Information Theory

Jinhee Paeng, Jungmo Lee, Hee-Chang Kim
May 28, 2023
Seoul National University

Table of Contents

Basics of Quantum Information Theory

Quantum Teleportation

State Merging

Non-maximally entangled pair

Conclusion

Table of Contents

Basics of Quantum Information Theory

Quantum Teleportation

State Merging

Non-maximally entangled pair

Conclusion

Basics of Quantum Information Theory

Definition (Classical Entropy, Shannon Entropy)

When the probability distribution of a random variable X is given as $p(x)$, its Shannon Entropy is defined as

$$
S(X)=-\sum_{x} p(x) \log p(x) .
$$

Remark. The Shannon Entropy of a random variable represents the uncertainty. The entropy is always non-negative, and is zero when $p(x)=1$. Among the distributions of fixed domain, the entropy obtains the maximal value at the uniform probability distribution.

Basics of Quantum Information Theory

Remark. Viewing qubits as some random variable and applying the Shannon Entropy is problematic. This is because the probability distribution differs from the choice of the measurement basis. In other words, defining the entropy using some probability distribution of measurement is not well defined. Thus, there's a need for novel definition of entropy for qubits, that are irrelevant from the choice of the measurement basis.

Idea. Since the eigen-decomposition of the matrix is unique, when

$$
\rho=\sum_{j} p_{j}|j\rangle\langle j|
$$

define the entropy as the Shannon entropy of $S\left(p_{j}, j=1,2, \cdots\right)$.

Basics of Quantum Information Theory

Definition (Quantum Entropy, von Neumann Entropy)

When the density matrix of a system A is given as ρ_{A}, its Quantum Entropy is defined as

$$
S_{A}=S\left(\rho_{A}\right)=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right] .
$$

Definition (Quantum conditional entropy)

When the system $A B$ is given, the quantum conditional entropy is computed as

$$
S(A \mid B)=S_{A B}-S_{B} .
$$

Basics of Quantum Information Theory

Here, we review some key properties about quantum entropy

Theorem

- Non-negativity : $S(A) \geq 0$.
- Pure state entropy : A is a pure state if and if only $S(A)=0$.
- Concavity : $\sum_{i} p_{i} S\left(\rho_{i}\right) \leq S\left(\sum_{i} p_{i} \rho_{i}\right)$

Remark. While the conditional entropy is also non-negative in classical entropy, it is not in the quantum. For example, when $A B$ is a pure state,

$$
S(A \mid B)=S_{A B}-S_{B}=0-S_{B}<0,
$$

since B is in a mixed state.

Basics of Quantum Information Theory

Here is an important property of the quantum entropy about pure state that does not have a classical analog.

Theorem

When a system $A B$ forms a pure state, then the following equality holds.

$$
S_{A}=S_{B}
$$

Proof.

The state $A B$ can be written as the following since its pure:

$$
\psi_{A B}=\sum_{i} \sqrt{p_{i}} \psi_{A}^{i} \otimes \psi_{B}^{i}
$$

Compute the density matrix of A and B,

$$
\rho_{A}=\sum_{i} \sqrt{p_{i}} \psi_{A}^{i}, \quad \rho_{B}=\sum_{i} \sqrt{p_{i}} \psi_{B}^{i}
$$

Thus, $S_{A}=S_{B}$.

Table of Contents

Basics of Quantum Information Theory

Quantum Teleportation

State Merging

Non-maximally entangled pair

Conclusion

Quantum Teleportation

Goal. Send an arbitrary Qubit A_{0} from Alice to Bob.
Setting. Alice and Bob share an entangled pair $A_{1} B$.
Solution. When $A_{0}=\alpha|0\rangle+\beta|1\rangle$, the initial state is written as

$$
\Psi_{A_{0} A_{1} B}=\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle)
$$

Then, Alice measures her qubits $A_{0} A_{1}$ to the following basis:

$$
\left\{\left|\phi_{i}\right\rangle \mid i=0,1,2,3\right\}=\left\{\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle), \frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle)\right\}
$$

Finally, Bob applies X or Z gates on B to obtain the initial A_{0}, according to results of Alice's measurement.

Table of Contents

Basics of Quantum Information Theory
 Quantum Teleportation

State Merging

Non-maximally entangled pair

Conclusion

State Merging

Setting.

- A system R has a purification $R A B$.
- Alice holds the state A.
- Bob holds the state B.

Goal.

1. Alice measures A on some bases, namely $\left\{E_{i}\right\}$.
2. Alice send the measured result to Bob.
3. Bob generates a system A^{\prime} with $\operatorname{dim} A=\operatorname{dim} A^{\prime}$.
4. Bob applies an Unitary gate U_{a} on $A^{\prime} B$.

Within these steps, the goal is to make $\psi_{R A B}^{i}=\Psi_{R A^{\prime} B}^{f}$.
Question. Would it be possible to make Bob to obtain all of the purification? i.e., Such E_{i} and U_{a} exist?

State Merging

Notation. For the simplicity, the superscript i, a, f represents the initial, after the measurement of Alice, final state, respectively. i.e.,

1. $\Psi_{R A B}^{i}$ is an initial pure state.
2. Alice measures A and obtains $|i\rangle_{A}$, and the state is $\Psi_{R B}^{a} \otimes|i\rangle_{A}$.
3. Bob generates the system A^{\prime} as $|i\rangle_{A^{\prime}}$, hence the state is $\Psi_{R B}^{a} \otimes|i\rangle_{A^{\prime}}$.
4. Bob applies an Unitary gate U_{a} on $A^{\prime} B$ and obtain $\Psi_{R A^{\prime} B}^{f}$.

Remark. States $\Psi_{R B}^{a} \otimes|i\rangle_{A^{\prime}}$ and $\Psi_{R A^{\prime} B}^{f}$ are also both purification of R.
Thus, existence of U_{a} is equivalent to ρ_{R} staying constant.

State Merging

Theorem

If the state merging is possible, then $S(A \mid B) \leq 0$.

Proof.

Since ρ_{R} stays constant, so does S_{R}. For the remark, $S_{R}=S_{A B}$ since $R A B$ forms a pure state, and so does $S\left(\rho_{B}^{a}\right)$ after the measurement.
Thus, $S_{A B}=S_{\rho_{B}^{z}}$ holds, regardless of the outcome of the measurement. Since ρ_{B} before and after the measurement is :

$$
\begin{aligned}
& \rho_{B}^{i}=\operatorname{tr}_{R A} \rho_{R A B}^{i} \\
& \rho_{B}^{a}=\frac{1}{p_{a}} \operatorname{tr}_{R A} \pi_{A}^{a} \rho_{R A B}^{i} \pi_{A}^{a}=\frac{1}{p_{a}} \operatorname{tr}_{R A} \pi_{A}^{a} \rho_{R A B}^{i},
\end{aligned}
$$

ρ_{B}^{i} can be expressed as

$$
\rho_{B}^{i}=\Sigma_{a} p_{a} \rho_{B}^{a} .
$$

State Merging

Proof (Cont.)

By the concavity of the entropy,

$$
S\left(\rho_{B}^{i}\right) \geq \Sigma_{a} p_{a} S\left(\rho_{B}^{a}\right) .
$$

Express $S_{A B}$ as

$$
S_{A B}=\Sigma_{a} p_{a} S\left(\rho_{A B}\right)=\Sigma_{a} p_{a} S\left(\rho_{B}^{a}\right) .
$$

Thus, we finish the proof by

$$
\begin{aligned}
S(A \mid B) & =S_{A B}-S(B) \\
& \leq \Sigma_{a} p_{a} S\left(\rho_{B}^{a}\right)-\Sigma_{a} p_{a} S\left(\rho_{B}^{a}\right)=0 .
\end{aligned}
$$

State Merging

Corollary

When $S(A \mid B)>0$, at least extra $S(A \mid B)$ number of maximally entangled pairs should be shared to make state merging possible.

Proof.

Assume that n maximally entangled pairs, namely $\tilde{A} \tilde{B}$, are shared between Alice and Bob. With R's purification being $R A \tilde{A} B \tilde{B}$,

$$
\begin{aligned}
S(A \tilde{A} \mid B \tilde{B}) & =S(A \tilde{A} B \tilde{B})-S(B \tilde{B}) \\
& =S_{A B}+S_{\tilde{A} \tilde{B}}-S_{B}-S_{\tilde{B}} \\
& =S_{A B}+0-S_{B}-n \\
& =S(A \mid B)-n .
\end{aligned}
$$

Since $S(A \tilde{A} \mid B \tilde{B}) \leq 0$ to allow state merging, $S(A \mid B) \leq n$.

Table of Contents

Basics of Quantum Information Theory
 Quantum Teleportation

State Merging

Non-maximally entangled pair

Conclusion

Non-maximally entangled pair

Question. The conditional entropy of the shared entangled qubits $S\left(A_{1} \mid B\right)$ is related to the availability of quantum teleportation when A_{1}, B are maximally entangled state. However, being maximally entangled is an ideal situation. How are the conditional entropy $S\left(A_{1} \mid B\right)$ related to the quantum transportation if $A_{1} B$ are in mixed state?

Setting. We will use the setting where $A_{1} B$ are mixed with the vacuum noise.

$$
\begin{aligned}
& \rho_{A_{1} B}=p\left|\psi^{+}\right\rangle\left\langle\psi^{+}\right|+\frac{1}{4}(1-p) I \\
& \rho_{B}=\operatorname{tr}_{A_{1}} \rho_{A_{1} B}=\frac{1}{2} I
\end{aligned}
$$

Non-maximally entangled pair

Remark. The quantum entropy of $\rho_{A_{1} B}$ and B are

$$
\begin{aligned}
& S\left(\rho_{A_{1} B}\right)=-\frac{1+3 p}{4} \log \frac{1+3 p}{4}-\frac{3(1-p)}{4} \log \frac{1-p}{4} \\
& S\left(\rho_{B}\right)=1 .
\end{aligned}
$$

The computation is done by decomposition through POVM set. Remark. The conditional entropy $S\left(A_{1} \mid B\right)$ is :

$$
\begin{aligned}
S\left(A_{1} \mid B\right) & =S\left(A_{1} B\right)-S(B) \\
& =-\frac{1+3 p}{4} \log \frac{1+3 p}{4}-\frac{3(1-p)}{4} \log \frac{1-p}{4}-1 .
\end{aligned}
$$

Non-maximally entangled pair

Non-maximally entangled pair

Remark. It is impossible to perform quantum teleportation with fidelity $=1$ if the mixed state is used, even when $S\left(A_{1} \mid B\right)<0$. This is because purification R of $A_{1} B$ collapses to certain state through the measurement of $A_{0} A_{1}$, changing $S(R)$.

Proof.

Without the loss of generality, assume A_{0} is set as $|0\rangle$. Then, the density matrix of $A B$ is

$$
\rho_{A B}=|0\rangle\left\langle0 | _ { A _ { 0 } } \otimes \left(p\left|\psi^{+}\right\rangle\left\langle\left.\psi^{+}\right|_{A_{1} B}+\frac{1}{4}(1-p) I_{A_{1} B}\right) .\right.\right.
$$

The purification R needs orthogonal basis of 4, referring as

$$
|0\rangle_{R},|1\rangle_{R},|2\rangle_{R},|3\rangle_{R}
$$

Non-maximally entangled pair

Proof (Cont.)

Then the state $R A B$ can be expressed as :

$$
\begin{aligned}
|\psi\rangle_{R A B}=|0\rangle_{A_{0}}(& \frac{\sqrt{1+3 p}}{2}\left|\psi^{+}\right\rangle_{A_{1} B}|0\rangle_{R}+\frac{\sqrt{1-p}}{2}\left|\psi^{-}\right\rangle_{A_{1} B}|1\rangle_{R} \\
& \left.+\frac{\sqrt{1-p}}{2}\left|\phi^{+}\right\rangle_{A_{1} B}|2\rangle_{R}+\frac{\sqrt{1-p}}{2}\left|\phi^{-}\right\rangle_{A_{1} B}|3\rangle_{R}\right) .
\end{aligned}
$$

Thus the entropy of R is equivalent to the Shannon Entropy

$$
S_{R}=S\left(\frac{1-3 p}{4}, \frac{1+p}{4}, \frac{1+p}{4}, \frac{1+p}{4}\right) .
$$

Non-maximally entangled pair

Proof (Cont.)

On the other hand, rewrite the state $R A B$ by expressing A into linear combination of the Bell states :

$$
\begin{aligned}
|\psi\rangle_{R A B}= & \left|\psi^{+}\right\rangle_{A}\left(\frac{\sqrt{1+3 p}}{2}|00\rangle+\frac{\sqrt{1-p}}{2}(|01\rangle+|12\rangle+|13\rangle)\right)_{B R} \\
& +\left|\psi^{-}\right\rangle_{A}(\cdots)+\left|\phi^{+}\right\rangle_{A}(\cdots)+\left|\phi^{-}\right\rangle_{A}(\cdots)
\end{aligned}
$$

Then, perform Bell measurement on A and for example, obtain $\left|\psi^{+}\right\rangle$. In this case, after the measurement,

$$
\left|\psi^{a}\right\rangle_{B R}=\left(\frac{\sqrt{1+3 p}}{2}|00\rangle+\frac{\sqrt{1-p}}{2}(|01\rangle+|12\rangle+|13\rangle)\right)_{B R} .
$$

Non-maximally entangled pair

Proof (Cont.)

The density matrix of R after the measurement is

$$
\begin{aligned}
\rho_{R}^{a} & =\operatorname{tr}_{A B}\left|\psi^{a}\right\rangle\left\langle\left.\psi^{a}\right|_{R A B}\right. \\
& =\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\frac{1+3 p}{4} & \frac{\sqrt{(1+3 p)(1-p)}}{4} \\
\frac{\sqrt{(1+3 p)(1-p)}}{4} & \frac{1-p}{4}
\end{array}\right]} & O \\
& 0
\end{array}\right. \\
& {\left[\begin{array}{cc}
\frac{1-p}{4} & \frac{1-p}{4} \\
\frac{1-p}{4} & \frac{1-p}{4}
\end{array}\right] }
\end{aligned}
$$

making the entropy of R after the measurement as

$$
S\left(\rho_{R}^{a}\right)=S\left(\frac{1+p}{2}, \frac{1-p}{2}, 0,0\right) \neq S(R)
$$

Non-maximally entangled pair

Remark. However, the conditional entropy is related to the Fidelity.

Definition (Fidelity)

Given two density matrices ρ_{ϕ} and τ, the fidelity is defined as a quantity

$$
f=\operatorname{tr}\left[\left(\sqrt{\tau} \rho_{\phi} \sqrt{\tau}\right)^{\frac{1}{2}}\right] .
$$

The average fidelity is defined as

$$
F=\int d \phi f
$$

Non-maximally entangled pair

Recall. When $A_{1} B$ are entangled with the vacuum noise,

$$
\rho_{A_{1} B}=p|\psi\rangle\langle\psi|+\frac{1}{4}(1-p) I_{4} .
$$

The density matrix of the system $A B$ as a whole is $\rho_{A B}=|\phi\rangle\langle\phi| \otimes \rho_{A_{1} B}$.
Then, after the measurement, the density matrix of $A B$ can be written as

$$
\rho_{A B}^{a}=\sum_{\alpha=0}^{3}\left(I_{4} \otimes U_{\alpha}\right)\left\langle\psi_{\alpha}\right| \rho_{A B}\left|\psi_{\alpha}\right\rangle\left(I_{4} \otimes U_{\alpha}^{\dagger}\right) .
$$

As a result, the fidelity between $\rho_{A B}$ and $\rho_{A B}^{a}$ is

$$
f=\frac{p}{4} \sum_{\alpha=0}^{3} \xi_{\alpha}+\frac{1}{2}(1-p) .
$$

Non-maximally entangled pair

Result. Thus, we have

$$
\left[F_{\min }=\frac{1}{2}\left(1-\frac{p}{3}\right)\right] \leq F \leq\left[F_{\max }=\frac{1}{2}(1+p)\right]
$$

Table of Contents

Basics of Quantum Information Theory
Quantum Teleportation
State Merging
Non-maximally entangled pair

Conclusion

Conclusion

- Quantum conditional entropy of the shared entangled pair is closely related to the Quantum teleportation.
- When the shared state $A_{1} B$ is a pure state, the conditional entropy is related to the availability of the quantum teleportation.
- When the shared state $A_{1} B$ is in a mixed state, the conditional entropy is related to the fidelity when the quantum teleportation is performed.

Reference

國 Witten, Edward. : A mini-introduction to information theory. La Rivista del Nuovo Cimento 43.4 (2020): 187-227.

Bang, Jeongho, Junghee Ryu, and Dagomir Kaszlikowski. : Fidelity deviation in quantum teleportation. Journal of Physics A: Mathematical and Theoretical 51.13 (2018): 135302.
围 Clauser, John F., et al. : Proposed experiment to test local hidden-variable theories. Physical review letters 23.15 (1969): 880.

THANK YOU FOR LISTENING

