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Abstract

Coordinate update/descent algorithms are widely used in large-scale optimization due to
their low per-iteration cost and scalability, but their behavior on infeasible or misspecified
problems has not been much studied compared to the algorithms that use full updates.
For coordinate-update methods to be as widely adopted to the extent so that they can be
used as engines of general-purpose solvers, it is necessary to also understand their behavior
under pathological problem instances. In this work, we show that the normalized iterates
of randomized coordinate-update fixed-point iterations (RC-FPI) converge to the infimal
displacement vector and use this result to design an efficient infeasibility detection method. We
then extend the analysis to the setup where the coordinates are defined by non-orthonormal
basis using the Friedrichs angle and then apply the machinery to decentralized optimization
problems.

Keywords: convex optimization, monotone operator theory, fixed-point iterations

1. Introduction

Coordinate update/descent algorithms are widely used in large-scale optimization due to
their low per-iteration cost and scalability. These algorithms update only a single block of
coordinates of an optimization variable per iteration in contrast to full or stochastic gradient
algorithms, which update all variables every iteration. The convergence of coordinate update
algorithms has been analyzed extensively, and they have been shown to achieve strong
practical and theoretical performance in many large-scale machine learning and optimization
problems [1] for non-pathological problem instances.

However, the behavior of coordinate update algorithms on infeasible or misspecified
problems has not been analyzed, which sharply contrasts with algorithms that use full
(deterministic) updates. The recent interest in building general-purpose optimization solvers
with first-order algorithms has led to much work analyzing the behavior of full-update
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first-order algorithms on pathological problem instances so that the solvers can robustly
detect such instances. For coordinate-update methods to be as widely adopted, to the extent
that they can be used as engines of general-purpose solvers, it is necessary to also understand
their behavior under pathological problem instances.

1.1. Summary of results, contribution, and organization

In this work, we analyze the behavior of randomized coordinate-update fixed-point
iterations (RC-FPI) applied to inconsistent problem instances. Analogous to the classical
results of the full-update fixed-point iterations, we show that the normalized iterate xk/k
generated by RC-FPI converges toward the infimal displacement vector, which serves as a
certificate of infeasibility, in the sense of both L2 and almost sure convergence. We then
bound the asymptotic bias and variance of the estimator, thereby establishing an asymptotic
convergence rate. Finally, we extend the analysis to the setup where the coordinates are
defined by non-orthonormal basis using the Friedrichs angle and then apply the machinery
to decentralized optimization problems.

Section 3 defines the randomized-coordinate update. The uniform expected step-size
condition is defined, which is a condition ensuring that each coordinate is updated equally in
expectation. α value is defined as the expected scale of the update on each coordinate.

Section 4 presents the convergence of normalized iterate. It starts with Section 4.1,
presenting properties about expectation values in (RC-FPI). The upper bound condition
for the expectation value of squared norm is presented with β value. We show that when
M = 𝕀, namely orthonormal basis, such condition is satisfied with β = α. Additionally, a
non-expansive behavior in expectation of squared norm is shown, which in result bounds the
expected difference between iterates from (RC-FPI) and (FPI with 𝕋̄).

Section 4.2 and Section 4.4 present first two key achievements of this paper, the convergence
of normalized iterate when the basis is orthonormal. Section 4.2 handles the L2 convergence,
and Section 4.4 handles almost sure convergence when the operator is averaged, i.e. θ < 1.
The normalized iterate xk/k converges to the −αv, where v is the infimal displacement
vector.

Section 5 presents the third main achievement, the asymptotic upper bound of the variance
of normalized iterate. We show that as the iteration count k → ∞, the limit supremum of
the variance is bounded in O (1/k). We further find the example with the equality to show
the bound is strict. Then, we present an experiment about a relation between range set and
the variance.

Section 6 presents the infeasibity detection method for (RC-FPI). Results from preceeding
sections are used to construct such method. The method focuses on rejecting the null
hypothesis ∥v∥M ≤ δ, by checking

∥∥xk/k
∥∥
M

≥ ϵ, after certain iteration count. We provide
the required iteration count to use such method.

Section 7 presents an extension of our results to the non-orthogonal basis. We show that
a certain condition on Friedrichs angle need to be satisfied to obtain the same results. Then
we apply this result on a decentralized optimization, (PG-EXTRA). Furthermore, in the
experiment of (PG-EXTRA) on infeasible problem, the convergence of the normalized iterate
was found to be faster in (RC-FPI) than (FPI).
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The paper is organized as follows. Section 2 sets up notations and reviews known
results and notions. Section 3 provides clear definition of randomized-coordinate update
setting. Section 4 presents the L2 and almost sure convergence of the normalized iterate.
Section 5 provides the asymptotic upper bound for the normalized iterate. Section 6 then
uses these results to build the infeasibility detection in (RC-FPI). Section 7 extends our
result to the non-orthogonal basis, allowing application to the optimization methods such as
(PG-EXTRA). Section 8 concludes the paper.

1.2. Prior work

1.2.1. FPI of inconsistent case.

Behavior of the inconsistent fixed-point iteration has been first characterized by Browder
and Petryshyn [2], who showed that the iterates are not bounded. Later, Pazy [3] showed

that the iterates actually diverge in a sense that limk→∞
𝕋kx0

k
= −v, and this work also led

to the similar results in more general Banach space settings [4, 5, 6, 7] or geodesic spaces
[8, 9]. If the operator is more than just non-expansive, then the difference of iterates is also
convergent to v; see Bruck Jr [10], Bailion et al. [11], Reich and Shafrir [12].

There are also in-depth analyses on the characteristics of infimal displacement vector,
regarding its direction [13, 14, 15] and the composition and convex combinations of non-
expansive operators [16, 17].

1.2.2. Infeasibility detection and numerical solvers.

Fixed-point iteration covers a broad range of optimization algorithms, including Douglas-
Rachford splitting (DRS) [18] or alternating direction method of multipliers (ADMM) [19, 20],
which are commonly used as a first-order methods for solving general convex optimization
problems. The infimal displacement vector of DRS and ADMM operator have been recently
studied [21, 22, 23, 24, 25, 26], and it was proven to have meaning in terms of primal and dual
problems as well [27, 28]. Related to such behaviors, ADMM-based infeasibility detecting
algorithms have been suggested [29, 30, 31], which led to the first-order numerical solvers like
OSQP [32] and COSMO [33]. Apart from above, SCS [34, 35] uses homogeneous self-dual
embedding [36, 37].

1.2.3. Randomized coordinate update and RC-FPI.

The coordinate descent is a method which updates one coordinate or blocks at each
iteration [38, 39, 40, 41, 42, 43, 44]. Such methods are also popular in proximal setup
[45, 46, 47], prox-linear [48, 49, 1, 50, 51, 52, 53, 54, 55], distributed (or asynchronous) setup
[56, 57], and even in discrete optimizations [58, 59, 60]. There are in-depth complexity analysis
and accelerated variants of coordinate descent method as well [61, 62, 63, 64, 65, 66, 67, 68, 69].
Furthermore, there are attempts to hybrid coordinate update with full update in primal-dual
algorithms [70, 71].

Randomized coordinate-update for fixed-point iteration has been first proposed by
Verkama [72]. General framework for randomized block-coordinate fixed-point iteration
was suggested by Combettes and Pesquet [73, 74], followed by similar line of works in-
cluding block-coordinate update fixed-point iteration in asynchronous parallel setup [57],
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forward-backward splitting [75, 76], Douglas-Rachford splitting [77], and so on. It also led to
the refined analysis in cyclic fixed-point iterations [78, 79], and the iteration complexity of
coordinate update fixed-point iterations and their variants [80, 55, 81, 82, 83].

1.2.4. Friedrichs angle and splitting methods.

Friedrichs angle [84, 85, 86] measures an angle between a number of subspaces, and is
often used to characterize the convergence rate of projection methods. [87, 88, 89, 90, 91, 92,
93, 94, 95, 96]. This kind of approach has been extended to cover splitting methods such as
DRS and ADMM as well [97, 98, 99, 100, 101, 102, 103].

2. Preliminaries and notations

In this section, we set up notations and review known results. First, let’s clarify the
underlying space. Throughout this paper, a Hilbert space refers to a real Hilbert space. The
underlying space is a real Hilbert space H, which is consisted of m real Hilbert spaces.

H = H1 ⊕H2 ⊕ . . .Hm.

An element u ∈ H can be decomposed into m blocks as

u = (u1, u2, . . . , um) , ui ∈ Hi,

and ui is called the ith block coordinates of u.
The Hilbert space H has its induced norm and inner product as

∥x∥2 =
m∑
i=1

∥xi∥2i , ⟨x, y⟩ =
m∑
i=1

⟨xi, yi⟩i,

for all x, y ∈ H, where ∥ · ∥i and ⟨·, ·⟩i are the norm and inner product of Hi and xi, yi are
ith block coordinates of x, y, respectively.

Consider a linear, bounded, self-adjoint and positive definite operator M : H → H. The
M -norm and M -inner product of H are defined as

∥x∥M =
√

⟨x,Mx⟩, ⟨x, y⟩M = ⟨x,My⟩,

which can also be a pair of norm and inner product of the space H. ∥ · ∥ and ⟨·, ·⟩ are simply
the instances of M -norm and M -inner product with M as an identity map. For the remark,
the map M can be expressed as a symmetric positive definite matrix if H = Rn. In this case,
M -inner product and M -norm are

∥x∥M =
√
xTMx, ⟨x, y⟩M = xTMy.

Define the M -variance of a random variable X with the domain H as

VarM [X] = E[∥X∥2M ]− ∥E[X]∥2M .

We develop the theory of Sections 4 and 5 with the general M -norm so that the theory is
applicable to the applications of Section 7.
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2.1. Operators

Denote 𝕀 : H → H as the identity operator. For an operator 𝕋 : H → H, let range𝕋 be a
range of 𝕋. If x⋆ ∈ H is a point such that x⋆ = 𝕋x⋆, it is called a fixed point of 𝕋.

We say an operator 𝕋 : H → H is non-expansive with respect to ∥·∥M if

∥𝕋x− 𝕋y∥M ≤ ∥x− y∥M , ∀x, y ∈ H,

and is θ-averaged for θ ∈ (0, 1) if 𝕋 = (1− θ)𝕀+ θℂ for some non-expansive operator ℂ. For
notational convenience, we will refer to non-expansive operators as θ-averaged operators with
θ = 1, even though, strictly speaking, θ = 1 means the operator is not averaged. An operator
𝕊 : H → H is (1/2)-cocoercive with respect to ∥·∥M if

⟨𝕊x− 𝕊y, x− y⟩M ≥ 1

2
∥𝕊x− 𝕊y∥2M , ∀x, y ∈ H.

𝕋 is non-expansive if and only if 𝕊 = 𝕀− 𝕋 is (1/2)-cocoercive. Also, 𝕋 is θ-averaged for
some θ ∈ (0, 1) if and only if 𝕊 = θ−1(𝕀− 𝕋) is (1/2)-cocoercive.

2.2. Inconsistent operators and infimal displacement vector

We say an operator 𝕋 : H → H is consistent if it has a fixed point, and inconsistent if
it does not have a fixed point. 𝕋 is consistent if and only if 0 ∈ range (𝕀− 𝕋). When 𝕋 is
non-expansive, the closure range (𝕀− 𝕋) is a nonempty closed convex set, so it has a unique
minimum-norm element, which we denote by v [3].

We call v the infimal displacement vector of 𝕋 [104, 21]. Alternatively, v is the projection
of 0 onto range (𝕀− 𝕋). Equivalently, v ∈ range (𝕀− 𝕋) is the infimal displacement vector
of 𝕋 if and only if

⟨y − v, v⟩M ≥ 0, ∀y ∈ range (𝕀− 𝕋). (1)

For a convex optimization problem, let 𝕋 be an operator corresponding to an iterative
first-order method, such as the Douglas-Rachford splitting (DRS) operator [18], and let v
be its infimal displacement vector. Loosely speaking, if the optimization problem is feasible
and the problem is well-behaved, then v = 0. (However, it is possible for “weakly infeasible”
problems to have v = 0, so v = 0 does not guarantee feasibility.) On the other hand, v ̸= 0
implies that the problem or its dual problem is infeasible, so v ̸= 0 serves as a certificate of
infeasibility [30, 29].

2.3. Fixed point iteration and normalized iterate

The fixed-point iteration (FPI) with respect to an operator 𝕋 : H → H is defined as

xk+1 = 𝕋xk, k = 0, 1, 2, . . . , (FPI)

where x0 ∈ H is a starting point.
Let x0, x1, x2, . . . be the iterates of (FPI). We call xk/k the kth normalized iterate of

(FPI) for k = 1, 2, . . . . The seminal work of Pazy [3] characterizes the dynamics of normalized
iterates of (FPI).
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Theorem 2.1 (Pazy [3]). Let 𝕋 : H → H be non-expansive. Let x0, x1, x2, . . . be the iterates
of (FPI). Then, the normalized iterate xk/k converges strongly,

xk

k
→ −v

as k → ∞, where v is the infimal displacement vector of 𝕋.

Since the underlying space is a Hilbert space, we clarify that the convergence in the space
H throughout this paper refers to the strong convergence of Hilbert space.

3. Randomized-coordinate update setup

In this section, we focus on a variant of (FPI) with randomized coordinate updates.
Consider a θ-averaged operator 𝕋 : H → H with its corresponding (1/2)-cocoercive op-
erator 𝕊 = θ−1(𝕀− 𝕋) with θ ∈ (0, 1]. To clarify, we will refer to non-expansive oper-
ators as θ-averaged operators with θ = 1. Define 𝕊i : H → H for i = 1, 2, . . . ,m as
𝕊ix = (0, . . . , 0, (𝕊x)i, 0, . . . , 0), where (𝕊x)i ∈ Hi.

We call I = (I1, I2, . . . , Im) ∈ [0, 1]m ⊂ Rm a selection vector and use it as follows.
Define 𝕊I : H → H and 𝕋I : H → H as

𝕊I =
m∑
i=1

Ii𝕊i, 𝕋I = 𝕀− θ𝕊I .

We can think of 𝕊I as the selection of blocks based on I and 𝕋I as the update based on
the selected blocks. Throughout this paper, we assume that I is randomly sampled from a
distribution on [0, 1]m that satisfies the uniform expected step-size condition

EI [I] = α1 (2)

for some α ∈ (0, 1], where 1 ∈ Rm is the vector with all entries equal to 1. (Note, I ∈ [0, 1]m

already implies α ∈ [0, 1] so we are additionally assuming that α > 0.) The randomized
coordinate fixed-point iteration (RC-FPI) is defined as

xk+1 = 𝕋Ikxk, k = 0, 1, 2, . . . , (RC-FPI)

where I0, I1, . . . is sampled IID and x0 ∈ H is a starting point.
(RC-FPI) is a randomized variant of (FPI). The uniform expected step-size condition

(2) allows us to view one step of (RC-FPI) to be corresponding to a step of (FPI) with
𝕋̄ : H → H defined as

𝕋̄x = EI [𝕋Ix] , ∀x ∈ H.

Equivalently, 𝕋̄ = 𝕀− αθ𝕊.
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4. Convergence of normalized iterates

In this section, we show that (RC-FPI) exhibits behavior similar to Theorem 2.1. Let
x0, x1, x2, . . . be the iterates of (RC-FPI). For each k ∈ N, we likewise call xk/k the kth
normalized iterate of (RC-FPI) for k = 1, 2, . . . . Then, the normalized iterate converges to
−αv both in L2 and almost surely.

xk

k

L2

→ −αv,
xk

k

a.s.→ −αv.

To clarify,
L2

→ and
a.s.→ respectively denote L2 and almost sure convergence of random variables.

The almost sure convergence means that xk/k being strongly convergent to −αv happens
with the probability 1.

4.1. Properties of expectation on RC-FPI

We first characterize certain aspects of (RC-FPI) before establishing our main results.
For any u ∈ H and selection vector I, define

uI =
m∑
i=1

Ii︸︷︷︸
∈R

(0, . . . , 0, ui, 0, . . . , 0)︸ ︷︷ ︸
∈H

,

where ui ∈ Hi for i = 1, . . . ,m. If I satisfies the uniform expected step-size condition (2)
with α ∈ (0, 1], then clearly EI [uI ] = αu. Let β > 0 be a coefficient such that

EI
[
∥uI∥2M

]
≤ β ∥u∥2M , ∀u ∈ H. (3)

Lemma 4.1. Consider a Hilbert space H with its norm ∥ · ∥. If I satisfies the uniform
expected step-size condition (2) with α ∈ (0, 1], then β = α satisfies (3).

Proof. Since Ii ∈ [0, 1],

EI

∥∥∥∥∥
m∑
i=1

Ii(0, . . . , 0, ui, 0, . . . , 0)

∥∥∥∥∥
2
 = EI

[
m∑
i=1

∥Iiui∥2i

]

≤ EI

[
m∑
i=1

Ii ∥ui∥2i

]
=

m∑
i=1

α ∥ui∥2 = α ∥u∥2 .

Thus, choose α as β to satisfy the inequality.

Next, we present a lemma exhibiting a non-expansiveness.

Lemma 4.2. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let I be a
random selection vector with distribution satisfying the uniform expected step-size condition
(2) with α ∈ (0, 1]. Assume (3) holds with some β that β ≤ α/θ. Let X and Y be random
variables on H that are independent of I. (However, X and Y need not be independent.)
Then,

E
I,X,Y

[
∥𝕋IX − 𝕋IY ∥2M

]
≤ E

X,Y

[
∥X − Y ∥2M

]
.

7



Proof. Substitute 𝕋I = 𝕀−θ𝕊I at EI,X,Y

[
∥𝕋IX − 𝕋IY ∥2M

]
and apply (3) with u as 𝕊X−𝕊Y

to get

E
I,X,Y

[
∥𝕋IX − 𝕋IY ∥2M

]
= E

I,X,Y

[
∥X − Y − θ (𝕊IX − 𝕊IY )∥2M

]
= E

X,Y

[
∥X − Y ∥2M

]
+ θ2 E

I,X,Y

[
∥𝕊IX − 𝕊IY ∥2M

]
− 2θ E

I,X,Y
[⟨X − Y, 𝕊IX − 𝕊IY ⟩M ]

≤ E
X,Y

[
∥X − Y ∥2M

]
+ βθ2 E

X,Y

[
∥(𝕊X − 𝕊Y )∥2M

]
− 2αθ E

X,Y
[⟨X − Y, 𝕊X − 𝕊Y ⟩M ] .

Since βθ ≤ α and 𝕊 is (1/2)-cocoercive,

βθ2 E
X,Y

[
∥𝕊X − 𝕊Y ∥2M

]
≤ αθ E

X,Y

[
∥𝕊X − 𝕊Y ∥2M

]
≤ 2αθ E

X,Y
[⟨X − Y, 𝕊X − 𝕊Y ⟩M ] .

Thus, we can reach the conclusion

E
I,X,Y

[
∥𝕋IX − 𝕋IY ∥2M

]
≤ E

X,Y

[
∥X − Y ∥2M

]
.

Lemma 4.3. Let 𝕋 : H → H be θ-averaged respect to ∥·∥M with θ ∈ (0, 1]. Let I be a random
selection vector with distribution satisfying the uniform expected step-size condition (2) with
α ∈ (0, 1]. Assume (3) holds with some β. For any x, z ∈ H,

E
I

[
∥𝕋Ix− 𝕋̄z∥2M

]
≤ ∥x− z∥2M + θ2

(
β − α2

)
∥𝕊x∥2M − αθ (1− αθ) ∥𝕊x− 𝕊z∥2M .

Proof. First, substitute 𝕋I = 𝕀−θ𝕊I and 𝕋̄ = 𝕀−αθ𝕊 at the expectation EI

[
∥𝕋Ix− 𝕋̄z∥2M

]
.

E
[
∥𝕋Ix− 𝕋̄z∥2M

]
= E

[
∥x− z − θ (𝕊Ix− α𝕊z)∥2M

]
= ∥x− z∥2M + θ2E

[
∥𝕊Ix− α𝕊z∥2M

]
− 2θE [⟨x− z,𝕊Ix− α𝕊z⟩M ]

= ∥x− z∥2M + θ2E
[
∥𝕊Ix− α𝕊z∥2M

]
− 2αθ ⟨x− z,𝕊x− 𝕊z⟩M .

Then, use (1/2)-cocoercive property of the operator 𝕊.

E
[
∥𝕋Ix− 𝕋̄z∥2M

]
≤ ∥x− z∥2M + θ2E

[
∥𝕊Ix− α𝕊z∥2M

]
− αθ ∥𝕊x− 𝕊z∥2M .

Finally, apply an inequality

E
[
∥𝕊Ix− α𝕊z∥2M

]
= E

[
∥(𝕊Ix− α𝕊x) + α (𝕊x− 𝕊z)∥2M

]
= E

[
∥𝕊Ix− α𝕊x∥2M

]
+ 2α ⟨E [𝕊Ix− α𝕊x] ,𝕊x− 𝕊z⟩M + α2 ∥𝕊x− 𝕊z∥2M

= E
[
∥𝕊Ix∥2M

]
− ∥α𝕊x∥2M + α2 ∥𝕊x− 𝕊z∥2M

≤
(
β − α2

)
∥𝕊x∥2M + α2 ∥𝕊x− 𝕊z∥2M ,

we get the desired inequality

EI

[
∥𝕋Ix− 𝕋̄z∥2M

]
≤ ∥x− z∥2M − αθ (1− αθ) ∥𝕊x− 𝕊z∥2M + θ2

(
β − α2

)
∥𝕊x∥2M .
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4.2. L2 convergence of normalized iterate

Theorem 4.4. Let 𝕋 : H → H be θ-averaged with respect to ∥ · ∥-norm with θ ∈ (0, 1].
Assume I0, I1, . . . is sampled IID from a distribution satisfying the uniform expected step-size
condition (2) with α ∈ (0, 1]. Let x0, x1, x2, . . . be the iterates of (RC-FPI). Then

xk

k

L2

→ −αv

as k → ∞, where v is the infimal displacement vector of 𝕋.

Before presenting the full proof, here is the key outline for the proof. Define another
sequence z0, z1, z2, . . . with

zk+1 = 𝕋̄zk, k = 0, 1, 2, . . . . (FPI with 𝕋̄)

Apply Lemma 4.3 on the iterates of (RC-FPI) starting from x0 and the iterates of (FPI with 𝕋̄)
starting from z0 = x0. In Section 4.3, we obtain a bound on the last two terms of Lemma 4.3
that is independent of k. More specifically, for all k = 1, 2, . . . ,

E
[∥∥xk − zk

∥∥2
M

]
≤ E

[∥∥xk−1 − zk−1
∥∥2
M

]
+ A,

where A = (1− αθ)
[
2
√
αθ ∥𝕊x0∥2M − α

θ
∥v∥2M

]
. Dividing by k2 to get

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ A

k

and appealing to Theorem 2.1, we conclude with the L2 convergence. We defer the detailed
proof to Section 4.3.

4.3. Proof of Theorem 4.4

In the proof, the norm ∥ · ∥ and the inner product ⟨·, ·⟩ are not used until the final part.
Lemmas prior to the main proof of Theorem 4.4 uses the general M -norm and M -inner
product.

We start the proof of Theorem 4.4 by presenting two lemmas to upper bound the terms∥∥𝕊zk∥∥
M

and
∥∥E [𝕊xk

]∥∥
M
.

Lemma 4.5. 𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and choose any starting point z0 ∈ H
for (FPI with 𝕋̄). When 𝕊 = θ−1(𝕀− 𝕋),∥∥𝕊zk∥∥

M
≤
∥∥𝕊zk−1

∥∥
M

≤ · · · ≤
∥∥𝕊z0∥∥

M
.

Proof of Lemma 4.5. All we need to prove is,

∥𝕊𝕋z∥M ≤ ∥𝕊z∥M , ∀z ∈ H.
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From 𝕊 being (1/2)-cocoercive operator,

2 ⟨𝕊𝕋z − 𝕊z,𝕋z − z⟩M ≥ ∥𝕊𝕋z − 𝕊z∥2M .

With 𝕋z − z = −θ𝕊z, we get

θ ⟨𝕊𝕋z − 𝕊z,−𝕊z − 𝕊𝕋z⟩M ≥ (1− θ) ∥𝕊𝕋z − 𝕊z∥2M ≥ 0,

which is equivalent to
∥𝕊𝕋z∥2M ≤ ∥𝕊z∥2M .

Lemma 4.6. 𝕋 : H → H is a θ-averaged with θ ∈ (0, 1] and choose any starting point x0 ∈ H
for (RC-FPI). When 𝕊 = θ−1(𝕀− 𝕋),∥∥E [𝕊𝕋Ik . . .𝕋I0x0

]∥∥
M

≤ β1/2α−1
∥∥𝕊x0

∥∥
M

holds if I0, , I1, . . . , Ik follow IID distribution with the condition (2) with α ∈ (0, 1] and (3)
holds with some β that β ≤ α/θ.

Proof of Lemma 4.6. Apply Lemma 4.2 repeatedly, we get

E
[
∥𝕋Ik . . .𝕋I1X − 𝕋Ik . . .𝕋I1Y ∥2M

]
≤ E

[
∥X − Y ∥2M

]
,

for arbitrary random variable X, Y . From Jensen’s inequality,

∥E [𝕋Ik . . .𝕋I1X − 𝕋Ik . . .𝕋I1Y ]∥2M ≤ E
[
∥X − Y ∥2M

]
.

Now set up X, Y as
X = 𝕋I0x0, Y = x0.

Then as a result, we have an inequality∥∥E [𝕋Ik . . .𝕋I1𝕋I0x0 − 𝕋Ik . . .𝕋I1x0
]∥∥2

M
≤ E

[∥∥θ𝕊I0x0
∥∥2
M

]
≤ β

∥∥θ𝕊x0
∥∥2
M
.

Since I0, I1, . . . , In are independent and identically distributed, the following equivalence
holds.

E
[
𝕋Ik . . .𝕋I1x0

]
= E

[
𝕋Ik−1 . . .𝕋I0x0

]
.

This equality gives the conclusion∥∥αE [θ𝕊𝕋Ik−1 . . .𝕋I1𝕋I0x0
]∥∥

M

=
∥∥E [(𝕀− 𝕋̄)𝕋Ik−1 . . .𝕋I1𝕋I0x0

]∥∥
M

=
∥∥E [(𝕀− 𝕋Ik)𝕋Ik−1 . . .𝕋I1𝕋I0x0

]∥∥
M

=
∥∥E [𝕋Ik . . .𝕋I1𝕋I0x0 − 𝕋Ik−1 . . .𝕋I0x0

]∥∥
M

=
∥∥E [𝕋Ik . . .𝕋I1𝕋I0x0 − 𝕋Ik . . .𝕋I1x0

]∥∥
M

≤ β1/2
∥∥θ𝕊x0

∥∥
M
.
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Lemma 4.7. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1], and let
x0, x1, x2, . . . be the iterates of (RC-FPI) and let z0, z1, z2, . . . be the iterates of (FPI with 𝕋̄).
Assume that the distribution of I satisfies the uniform expected step-size condition (2) with
α ∈ (0, 1] and (3) holds with some β that β ≤ α/θ. Then

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k2

∥∥x0 − z0
∥∥2
M

+
1

k
(1− αθ)

[
2
√
αθ
∥∥𝕊x0

∥∥
M

∥∥𝕊z0∥∥
M

− α

θ
∥v∥2M

]
,

where v is the infimal displacement vector of 𝕋.

Proof. The key step of proving Lemma 4.7 is to bound the last two terms in Lemma 4.3. To
achieve this, rewrite the terms as

− αθ (1− αθ) ∥𝕊x− 𝕊z∥2M + θ2
(
β − α2

)
∥𝕊x∥2M

= −θ (α− βθ) ∥𝕊x∥2M + 2αθ (1− αθ) ⟨𝕊x,𝕊z⟩M − αθ (1− αθ) ∥𝕊z∥2M
≤ −θ−1α (1− αθ) ∥v∥2M + 2αθ (1− αθ) ⟨𝕊x,𝕊z⟩M ,

where the last inequality is from v being infimal displacement vector, i.e. ∥v∥M ≤
∥θ𝕊x∥M , ∥θ𝕊z∥M .

Now use Lemma 4.3 with x as xk and z as zk. Take a full expectation among I0, I1, . . . , Ik−1,
then we get

E
[∥∥xk − zk

∥∥2
M

]
≤ E

[∥∥xk−1 − zk−1
∥∥2
M

]
− θ−1α (1− αθ) ∥v∥2M + 2αθ (1− αθ)E

[〈
𝕊xk−1,𝕊zk−1

〉
M

]
≤ E

[∥∥xk−1 − zk−1
∥∥2
M

]
− θ−1α (1− αθ) ∥v∥2M + 2αθ (1− αθ)

∥∥E [𝕊xk−1
]∥∥

M

∥∥𝕊zk−1
∥∥
M

≤ E
[∥∥xk−1 − zk−1

∥∥2
M

]
− θ−1α (1− αθ) ∥v∥2M + 2β1/2θ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M

≤ E
[∥∥xk−1 − zk−1

∥∥2
M

]
− θ−1α (1− αθ) ∥v∥2M + 2

√
αθ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M
,

where the third inequality uses Lemma 4.5 and Lemma 4.6. Note that the term

−θ−1α (1− αθ) ∥v∥2M + 2
√
αθ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M

is independent from the random process and iterations. Thus, above inequality can be
applied through iterations, resulting in

E
[∥∥xk − zk

∥∥2
M

]
≤
∥∥x0 − z0

∥∥2
M
+ k

(
−α

θ
(1− αθ) ∥v∥2M + 2

√
αθ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M

)
.

Divide both sides by k2 to obtain the desired result

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k

(
2
√
αθ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M

− α

θ
(1− αθ) ∥v∥2M

)
+

1

k2

∥∥x0 − z0
∥∥2
M
.
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Proof of and Theorem 4.4. Since the M = 𝕀, we have β = α ≤ α/θ due to Lemma 4.1. Thus,
we may apply Lemma 4.7 with z0 = x0.

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
]
≤ 1

k

(
2
√
αθ (1− αθ)

∥∥𝕊x0
∥∥2 − α

θ
(1− αθ) ∥v∥2

)
.

When the limit k → ∞ is taken,

lim
k→∞

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
]
= 0, lim

k→∞

∥∥∥∥zkk + αv

∥∥∥∥ = 0,

where the second equation is from Theorem 2.1. These two limits provide L2 convergence of
normalized iterate, namely

xk

k

L2

→ −αv,

as k → ∞.

4.4. Almost sure convergence of normalized iterate

Theorem 4.8. Under the conditions of Theorem 4.4 with θ ∈ (0, 1), xk/k is strongly
convergent to −αv in probability 1. In other words,

xk

k

a.s.→ −αv

as k → ∞.

While the full proof is presented in the next subsection, here is the outline of the proof
of the theorem. Let z0, z1, z2, . . . be the iterates of (FPI with 𝕋̄). Assume β < α/θ. From
Lemma 4.3 and further analysis in Section 4.5, we obtain

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

∣∣∣∣∣Fk−1

]
≤
∥∥∥∥ xk−1

k − 1
− zk−1

k − 1

∥∥∥∥2
M

+
B

k2

∥∥𝕊z0∥∥2
M

for k = 2, 3, . . . , where B = αθ2(1− αθ)(β − α2)/(α− βθ) ≥ 0 and Fk is a filtration
consisting of information up to the kth iterate.

We then apply the Robbins–Siegmund quasi-martingale theorem [105], restated as

Lemma 4.9, to conclude that the random sequence
∥∥∥xk

k
− zk

k

∥∥∥2
M

converges almost surely

to some random variable. Then, by Fatou’s lemma and the L2 convergence of Theorem 4.4,
we have

E

[
lim
k→∞

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ lim

k→∞
E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
= 0.
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Thus, as k → ∞, ∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

a.s.→ 0,

and appealing to Theorem 2.1, we conclude the almost sure convergence. Finally, in the case
of ∥ · ∥-norm, the assumption β < α/θ is satisfied by Lemma 4.1. We defer the detailed proof
to Section 4.5.

4.5. Proof of Theorem 4.8

First, let’s recall the Robbins-Siegmund quasi-martingale theorem [105].

Lemma 4.9 (Robbins and Siegmund [105]). F1 ⊂ F2 ⊂ . . . is a sequence of sub-σ-algebras
of F where (Ω,F , P ) is a probability space. When Xk, bk, τk, ζk are non-negative Fk-random
variables such that

E [Xk+1 | Fk] ≤ (1 + bk)Xk + τk − ζk,

limk→∞Xk exists and is finite and
∑∞

k=1 ζk < ∞ almost surely if
∑∞

k=1 bk < ∞,
∑∞

k=1 τk < ∞.

Now, we present a proof of Theorem 4.8 with the norm of ∥·∥M .

Lemma 4.10. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1], and let
x0, x1, x2, . . . be the iterates of (RC-FPI) and let z0, z1, z2, . . . be the iterates of (FPI with 𝕋̄).
Assume that the distribution of I satisfies the uniform expected step-size condition (2) with
α ∈ (0, 1] and (3) holds with some β that β < α/θ. Then xk/k is strongly convergent to −αv
in probability 1, i.e.

xk

k

a.s.→ −αv

as k → ∞, where v is the infimal displacement vector of 𝕋.

Proof. To use the Robbins-Siegmund quasi-martingale theorem Lemma 4.9, we cannot take
full expectation to bound the extra terms in Lemma 4.3. Here, we provide alternate way to
bound the last two terms in Lemma 4.3.

− αθ (1− αθ) ∥𝕊x− 𝕊z∥2M + θ2
(
β − α2

)
∥𝕊x∥2M

= −θ (α− βθ) ∥𝕊x∥2M + 2αθ (1− αθ) ⟨𝕊x,𝕊z⟩M − αθ (1− αθ) ∥𝕊z∥2M

= −θ (α− βθ)

∥∥∥∥𝕊x− α− α2θ

α− βθ
𝕊z

∥∥∥∥2
M

+ θ (α− βθ)

∥∥∥∥α− α2θ

α− βθ
𝕊z

∥∥∥∥2
M

− αθ (1− αθ) ∥𝕊z∥2M

= −θ (α− βθ)

∥∥∥∥𝕊x− α− α2θ

α− βθ
𝕊z

∥∥∥∥2
M

+
αθ2(1− αθ)(β − α2)

α− βθ︸ ︷︷ ︸
=:B≥0

∥𝕊z∥2M

≤ B ∥𝕊z∥2M .

Note that this inequality only holds when β < α/θ. Also, β−α2 ≥ 0 comes from ∥E [uI ]∥2M ≤
E
[
∥uI∥2M

]
.
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From Lemma 4.3,

EIk

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

| Fk−1

]
≤
∥∥∥∥ xk−1

k − 1
− zk−1

k − 1

∥∥∥∥2
M

+
B

k2

∥∥𝕊zk−1
∥∥2
M
,

where x0, x1, x2, . . . is a random sequence generated by (RC-FPI) with 𝕋, z0, z1, z2, . . . is
a sequence generated by (FPI with 𝕋̄) and starting point z0 = x0, and Fk is a filtration
consisting of information up to nth iteration.

With
∥∥𝕊zk−1

∥∥
M

≤ ∥𝕊z0∥M from the Lemma 4.5,

EIk

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

| Fk−1

]
≤
∥∥∥∥ xk−1

k − 1
− zk−1

k − 1

∥∥∥∥2
M

+
B

k2

∥∥𝕊z0∥∥2
M
.

Now we may apply the Robbins-Siegmund quasi-martingale theorem, Lemma 4.9, and

conclude that the random sequence
∥∥∥xk

k
− zk

k

∥∥∥2
M

converges almost surely to some random

variable since
∑∞

n=1 n
−2B ∥𝕊z0∥2M < ∞. Then,

E

[
lim
k→∞

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ lim

k→∞
E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
= 0

holds, where the inequality comes from the Fatou’s lemma and the equality comes from L2

convergence by taking k → ∞ in Lemma 4.7. Thus,

lim
k→∞

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

= 0, a.s.

happens, which, with the strong convergent zk/k to −αv by Theorem 2.1, gives the almost
sure convergence of Lemma 4.10.

Proof of Theorem 4.8. In the case of M = 𝕀, with θ ∈ (0, 1), we have β = α < α/θ from
Lemma 4.1. Thus, from Lemma 4.10, we can conclude

xk

k

a.s.→ −αv

as k → ∞.

4.6. Infeasibility detection.

Since v ̸= 0 implies the problem is inconsistent and xk/k → −αv, we propose

1

k
∥xk∥ > ε (4)

as a test of inconsistency with sufficiently large k ∈ N and sufficiently small ε > 0. The
remaining question of how to choose the iteration count k and threshold ε will be considered
in Section 6. (This test is not able to detect inconsistency in the pathological case where the
problem is inconsistent despite v = 0.)
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5. Bias and variance of normalized iterates

Previously in Section 4, we showed that the normalized iterate xk/k of (RC-FPI) converges
to the scaled infimal displacement vector −αv. However, to use xk/k as an estimator of
−αv and to use xk/k ̸= 0 as a test for inconsistency, we need to characterize the error
∥xk/k+αv∥2. In this section, we provide an asymptotic upper bound of the bias and variance
of xk/k as an estimator of −αv.

Theorem 5.1. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let v be
the infimal displacement vector of 𝕋. Assume I0, I1, . . . is sampled IID from a distribution
satisfying the uniform expected step-size condition (2) with α ∈ (0, 1], and assume (3) holds
with some β > 0 such that β < α/θ. Let x0, x1, x2, . . . be the iterates of (RC-FPI).

(a) If v ∈ range (𝕀− 𝕋), then as k → ∞,

E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≲

(β − α2) ∥v∥2M
k

.

(b) In general, regardless of whether v is in range (𝕀− 𝕋) or not,

VarM

(
xk

k

)
≲

(β − α2) ∥v∥2M
k

as k → ∞.

To clarify, the precise meaning of the first asymptotic statement of (a) is

lim sup
k→∞

k E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≤ (β − α2) ∥v∥2M .

The precise meaning of the asymptotic statement of (b) is defined similarly.
Here, we outline the proof for the special case, v ∈ range (𝕀− 𝕋), while deferring the

full proof to Section 5.1. Let z0, z1, z2, . . . be the iterates of (FPI with 𝕋̄) with z0 satisfying
θ𝕊z0 = v. Then, θ𝕊zk = v for all k ∈ N. Apply Lemma 4.3 on xk and zk and take full
expectation to get

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k

∥∥x0 − z0
∥∥2
M

+ E

[
1

k

k−1∑
j=0

U j

]

where U0, U1, U2, . . . is a sequence of random variables :

Uk =− α
(
θ−1 − α

) ∥∥θ𝕊xk − v
∥∥2
M

+ θ2
(
β − α2

) ∥∥𝕊xk
∥∥2
M
.

The key idea is to bound the Uk terms. This can be done by showing that v and θ𝕊xk−v
are almost orthogonal. Such property is exhibited in the next two lemmas.
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Lemma 5.2. Suppose θ-averaged operator 𝕋 : H → H has an infimal displacement vector
v. Consider a closed cone Cδ in H with δ ∈ (0, π/2), which is a set of vectors whose angle
between them and v being less than π/2− δ.

Cδ = {x : ⟨v, x⟩M ≥ sin δ ∥v∥M ∥x∥M} .

When the points y, z ∈ H satisfy that 𝕊y ∈ 𝕊z+Cδ and 𝕊y ̸= 𝕊z, then the following inequality
holds.

⟨−v, y − z⟩M ≤ cos δ ∥v∥M ∥y − z∥M .

Proof. Since the inequality holds if v = 0, let’s assume that v ̸= 0.
Define x as y − z, u as 𝕊y − 𝕊z. Since u ∈ Cδ, there exist ϕ ∈ [δ, π/2] such that

⟨v, u⟩M = sinϕ ∥v∥M ∥u∥M .

Due to cocoersivity of 𝕊, x and u must satisfy

⟨x, u⟩M = ⟨y − z,𝕊y − 𝕊z⟩M ≥ 0.

Since v is nonzero, decompose x and u as

x = ⟨x,v⟩M
v

∥v∥2M
+ v⊥

x , u = ⟨u,v⟩M
v

∥v∥2M
+ v⊥

u .

Both v⊥
x and v⊥

u are orthogonal to v and∥∥v⊥
u

∥∥
M

= cosϕ ∥u∥M ,
∥∥v⊥

x

∥∥2
M

= ∥x∥2M −
(
⟨x,v⟩M
∥v∥M

)2

.

Compute ⟨x, u⟩ using the decomposition above,

⟨x, u⟩M =
1

∥v∥2M
⟨x,v⟩M ⟨u,v⟩M +

〈
v⊥
x , u

〉
M

=
1

∥v∥M
⟨x,v⟩M sinϕ ∥u∥M +

〈
v⊥
x ,v

⊥
u

〉
M

≤ 1

∥v∥M
⟨x,v⟩M sinϕ ∥u∥M + cosϕ ∥u∥M

√
∥x∥2M −

(
⟨x,v⟩
∥v∥M

)2

.

If ⟨x,−v⟩M ≤ 0, then ⟨−v, y − z⟩M ≤ 0 ≤ cos δ ∥v∥M ∥y − z∥M and the conclusion holds.
Thus, consider only the case where ⟨x,−v⟩M > 0. In such case, ⟨x, u⟩M ≥ 0 with ∥u∥M > 0
gives

0 <
1

∥v∥M
⟨x,−v⟩M sinϕ ≤ cosϕ

√
∥x∥2M −

(
⟨x,−v⟩M
∥v∥M

)2

,

which leads to a conclusion by squaring each sides :

⟨x,−v⟩M ≤ cosϕ ∥v∥M ∥x∥M ≤ cos δ ∥v∥M ∥x∥M .
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Lemma 5.3. Let 𝕋 : H → H be a θ-averaged operator with respect to ∥·∥M . Let v be the
infimal displacement vector of 𝕋. Let 𝕊 = θ−1 (𝕀− 𝕋). Consider a sequence y0, y1, y2, . . . in
H such that its normalized iterate converges strongly to −γv,

lim
k→∞

yk

k
= −γv,

for some γ > 0. Then, for any δ ∈ (0, π/2) and z ∈ H, there exists Nδ,z ∈ N such that, for
all k > Nδ,z, 〈

v,𝕊yk − 𝕊z
〉
M

≤ ∥v∥M
∥∥𝕊yk − 𝕊z

∥∥
M
sin δ.

Proof. Choose a point z in H. To prove by contradiction, suppose that for any l, there exists
kl > l such that

𝕊ykl ∈ 𝕊z + Cδ, 𝕊ykl ̸= 𝕊z.

The subsequence yk1 , yk2 , yk3 , . . . satisfies the inequality below for all l, due to Lemma 5.2.〈
−v, ykl − z

〉
M

≤ cos δ ∥v∥M
∥∥ykl − z

∥∥
M
.

Divide each side by kl and take a limit as l → ∞. Since liml→∞ ykl/kl = −γv strongly,

γ ∥v∥2M = ⟨−v,−γv⟩M ≤ cos δ ∥v∥M ∥−γv∥M < γ ∥v∥2M ,

which yields a contradiction.
Thus, when z is given, for any δ ∈ (0, π/2), there exist a Nδ,z such that for all k > Nδ,z,

it is either 𝕊yk = 𝕊z or 𝕊yk /∈ 𝕊z + Cδ. As a conclusion, for all k > Nδ,z,〈
v,𝕊yk − 𝕊z

〉
M

≤ sin δ ∥v∥M
∥∥𝕊yk − 𝕊z

∥∥
M
.

Returning to the proof outline of Theorem 5.1, by the Inequality 1 and Lemma 5.3,

0 ≤
〈
v, θ𝕊xk − v

〉
M

≤ ∥v∥M
∥∥θ𝕊xk − v

∥∥
M
sin δ ≈ 0

for small δ. Therefore, for k large enough,∥∥θ𝕊xk
∥∥2
M

≲ ∥v∥2M +
∥∥θ𝕊xk − v

∥∥2
M
.

Since θ𝕊xk → v as k → ∞, we have

Uk ≲
(
β − α2

)
∥v∥2M .

Finally, we conclude

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≲
(
β − α2

)
∥v∥2M .

Note that for (b), kVarM
(
xk/k

)
can be bounded by

kVarM

(
xk

k

)
≤ E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
,

and so is (a) with an extra O
(
1/
√
k
)
term.
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5.1. Proof of Theorem 5.1

Proof. When x0, x1, x2, . . . is a random sequence generated by RC-FPI of 𝕋 and z0, z1, z2, . . .
is a sequence generated by FPI of 𝕋̄ with z0 = z, from Lemma 4.3, it is already known that
for all k,

EIk

[∥∥𝕋Ikxk − 𝕋̄zk
∥∥2
M

]
≤
∥∥xk − zk

∥∥2
M

− αθ (1− αθ)
∥∥𝕊xk − 𝕊zk

∥∥2
M

+ θ2
(
β − α2

) ∥∥𝕊xk
∥∥2
M
.

For convenience, define

Uk = −αθ (1− αθ)
∥∥𝕊xk − 𝕊zk

∥∥2
M

+ θ2
(
β − α2

) ∥∥𝕊xk
∥∥2
M
.

Consequently, by taking a full expectation,

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k

∥∥x0 − z
∥∥2
M

+ E

[
1

k

k−1∑
j=0

U j

]
.

The key of this proof is to bound the term
∥∥𝕊xk

∥∥2
M

in Uk using Lemma 5.3, since xk/k

is strongly convergent, i.e., limk→∞ xk/k = −αv almost surely. Suppose the case where
limk→∞ xk/k = −αv holds, which actually does hold almost surely. For such xk, for an
arbitrary δ ∈ (0, π/2), there exists a Nδ,z such that for all k > Nδ,z,〈

v,𝕊xk − 𝕊z
〉
M

≤ sin δ ∥v∥M
∥∥𝕊xk − 𝕊z

∥∥
M
.

From the inequality above, for all sufficiently large k > Nδ,z,∥∥𝕊xk
∥∥2
M

=
∥∥𝕊xk − 𝕊z

∥∥2
M

+ 2
〈
𝕊xk − 𝕊z,𝕊z

〉
M

+ ∥𝕊z∥2M

=
∥∥𝕊xk − 𝕊z

∥∥2
M

+ 2

〈
𝕊xk − 𝕊z, 𝕊z − 1

θ
v

〉
M

+ 2

〈
𝕊xk − 𝕊z,

1

θ
v

〉
M

+ ∥𝕊z∥2M

≤
∥∥𝕊xk − 𝕊z

∥∥2
M

+ 2

{∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+ sin δ

∥∥∥∥1θv
∥∥∥∥
M

}∥∥𝕊xk − 𝕊z
∥∥
M

+ ∥𝕊z∥2M .

By the inequality above, the term Uk can be bounded as :

Uk ≤ −
(
αθ − α2θ2

) ∥∥𝕊xk − 𝕊zk
∥∥2
M

+ θ2
(
β − α2

) [∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2

{∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+ sin δ

∥∥∥∥1θv
∥∥∥∥
M

}∥∥𝕊xk − 𝕊z
∥∥
M

+ ∥𝕊z∥2M
]

= θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θ2
(
β − α2

){∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+ sin δ

∥∥∥∥1θv
∥∥∥∥
M

}∥∥𝕊xk − 𝕊z
∥∥
M

+
(
αθ − α2θ2

){∥∥𝕊xk − 𝕊z
∥∥2
M

−
∥∥𝕊xk − 𝕊zk

∥∥2
M

}
.
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Here, the term
∥∥𝕊xk − 𝕊z

∥∥2
M

−
∥∥𝕊xk − 𝕊zk

∥∥2
M

is bounded above by∥∥𝕊xk − 𝕊z
∥∥2
M

−
∥∥𝕊xk − 𝕊zk

∥∥2
M

≤
∥∥𝕊xk − 𝕊z

∥∥2
M

−
(∥∥𝕊xk − 𝕊z

∥∥2
M

+
∥∥𝕊z − 𝕊zk

∥∥2
M

+ 2
〈
𝕊xk − 𝕊z,𝕊z − 𝕊zk

〉
M

)
≤ −

∥∥𝕊z − 𝕊zk
∥∥2
M

+ 2
∥∥𝕊xk − 𝕊z

∥∥
M

∥∥𝕊z − 𝕊zk
∥∥
M
,

from the triangular inequality.
Thus, we can bound Uk as

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θ2
(
β − α2

){∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+ sin δ

∥∥∥∥1θv
∥∥∥∥
M

}∥∥𝕊xk − 𝕊z
∥∥
M

+
(
αθ − α2θ2

){
−
∥∥𝕊z − 𝕊zk

∥∥2
M

+ 2
∥∥𝕊xk − 𝕊z

∥∥
M

∥∥𝕊z − 𝕊zk
∥∥
M

}
= θ2

(
β − α2

)
∥𝕊z∥2M −

(
αθ − α2θ2

) ∥∥𝕊z − 𝕊zk
∥∥2
M

− θ (α− βθ)
∥∥𝕊xk − 𝕊z

∥∥2
M

+ 2θτδ,z,k
∥∥𝕊xk − 𝕊z

∥∥
M

≤ θ2
(
β − α2

)
∥𝕊z∥2M

− θ (α− βθ)
∥∥𝕊xk − 𝕊z

∥∥2
M

+ 2θτδ,z,k
∥∥𝕊xk − 𝕊z

∥∥
M
,

where τδ,z,k is defined as

τδ,z,k =
(
β − α2

)
(∥θ𝕊z − v∥M + sin δ ∥v∥M) +

(
α− α2θ

) ∥∥𝕊z − 𝕊zk
∥∥
M
.

To make an upper bound of τδ,z,k regardless of k, an upper bound of
∥∥𝕊z − 𝕊zk

∥∥
M

independent from k is required. Since v is the infimal displacement vector,〈
𝕊zk − 1

θ
v,v

〉
M

≥ 0, ∥𝕊z∥2M −
∥∥∥∥1θv

∥∥∥∥2
M

≥ 0,

hold. With
∥∥𝕊zk∥∥

M
≤ ∥𝕊z∥M from Lemma 4.5, such uniform upper bound can be built as

∥∥𝕊z − 𝕊zk
∥∥
M

≤
∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+

∥∥∥∥𝕊zk − 1

θ
v

∥∥∥∥
M

=

∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+

√
∥𝕊zk∥2M − 2

〈
𝕊zk,

1

θ
v

〉
M

+

∥∥∥∥1θv
∥∥∥∥2
M

=

∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+

√
∥𝕊zk∥2M − 2

〈
𝕊zk − 1

θ
v,

1

θ
v

〉
M

−
∥∥∥∥1θv

∥∥∥∥2
M

≤
∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+

√
∥𝕊z∥2M −

∥∥∥∥1θv
∥∥∥∥2
M

.
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Now define τ̃δ,z as

τ̃δ,z =
(
β − α2

)
(∥θ𝕊z − v∥M + sin δ ∥v∥M)+

(
α− α2θ

)
∥∥∥∥𝕊z − 1

θ
v

∥∥∥∥
M

+

√
∥𝕊z∥2M −

∥∥∥∥1θv
∥∥∥∥2
M

 ,

then we have τδ,z,k ≤ τ̃δ,z for any k ∈ N.
Thus, we can bound Uk as

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θτδ,z,k
∥∥𝕊xk − 𝕊z

∥∥
M

≤ θ2
(
β − α2

)
∥𝕊z∥2M − θ (α− βθ)

∥∥𝕊xk − 𝕊z
∥∥2
M

+ 2θτ̃δ,z
∥∥𝕊xk − 𝕊z

∥∥
M
.

From the fact that −at2 + 2bt ≤ b2/a for any a, b > 0 and t ∈ R, Uk has an upper bound
which is completely independent from xk and k.

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z

However, this upper bound holds only at k > Nδ,z. Since Nδ,z depends on the choice of
the sequence x0, x1, x2, . . . , such upper bound only works when the sequence x0, x1, x2, . . . is
fixed. To avoid this problem, take a limit supremum of Uk over k,

lim sup
k→∞

Uk ≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z.

Furthermore, due to Cesàro mean,

lim sup
k→∞

{
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

}
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z.

Now, this inequality always holds with only one condition on the choice of sequence
x0, x1, x2 . . . ,

lim
k→∞

xk

k
= −αv,

regardless of z, δ. Since limk→∞ xk/k = −αv holds almost surely,

E

[
lim sup
k→∞

{
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

}]
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z

holds almost surely for any z, δ.
By Fatou’s lemma, we also have

lim sup
k→∞

E

[
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

]
≤ E

[
lim sup
k→∞

{
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

}]
.
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Thus, lim supk→∞ E
[
k
∥∥∥xk

k
− zk

k

∥∥∥2
M

]
has a upper bound of

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ lim sup

k→∞
E

[
1

k

∥∥x0 − z
∥∥2
M

+
1

k

k−1∑
j=0

U j

]

≤ θ2
(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z.

(5)

Proof of statement (b). First, let’s prove the statement (b) of Theorem 5.1. Since

lim sup
k→∞

kVarM

(
xk

k

)
≤ lim sup

k→∞
E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
,

from (5) we have

lim sup
k→∞

kVarM

(
xk

k

)
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z.

At start, we chose z and δ arbitrarily. Since v is the infimal displacement vector, there
exists a sequence of z’s that allows us to take a limit ∥𝕊z − θ−1v∥M → 0. When we take a
limit ∥𝕊z − θ−1v∥M → 0 and δ → 0,

lim
∥𝕊z− 1

θ
v∥

M
→0,δ→0

τ̃δ,z = 0.

Since lim supk→∞ kVarM
(
xk/k

)
is independent from δ and z, by ∥𝕊z − θ−1v∥M → 0 and

δ → 0 we have

lim sup
k→∞

kVarM

(
xk

k

)
≤
(
β − α2

)
∥v∥2M .

Proof of statement (a). Next, to prove the statement (a) of Theorem 5.1, let’s start
again from inequality (5),

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ θ2

(
β − α2

)
∥𝕊z∥2M +

θ

α− βθ
τ̃ 2δ,z.

Expand the term
∥∥∥xk

k
+ αv

∥∥∥2
M

as

E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
= E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
+ 2

〈
E
[
xk

k
− zk

k

]
,
zk

k
+ αv

〉
M

+

∥∥∥∥zkk + αv

∥∥∥∥2
M

.

From Lemma 4.7 we have∥∥∥∥E [xk

k
− zk

k

]∥∥∥∥2
M

≤ E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k
(1− αθ)

[
2
√
αθ
∥∥𝕊x0

∥∥
M

∥∥𝕊z0∥∥
M

− α

θ
∥v∥2M

]
+

1

k2

∥∥x0 − z0
∥∥2
M
.
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When x⋆ is a point such that x⋆ − 𝕋x⋆ = v, set z0 = x⋆. Then,

zk = −kαv + x⋆,

since
∥∥θ𝕊zk∥∥

M
≤ ∥θ𝕊z∥M = ∥v∥M makes θ𝕊zk = v for all k ∈ N. Thus,

E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]2
≤ E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]

+ 2
1√
k

√
(1− αθ)

[
2
√
αθ ∥𝕊x0∥M ∥𝕊x⋆∥M − α

θ
∥v∥2M

]
+

1

k
∥x0 − z0∥2M

∥∥∥x⋆

k

∥∥∥
M

+
∥∥∥x⋆

k

∥∥∥2
M
.

Note that the last two terms are O
(
k−3/2

)
. By taking lim sup as k → ∞,

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≤ lim sup

k→∞
E

[
k

∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
.

Thus,

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≤ θ2

(
β − α2

)
∥𝕊x⋆∥2M +

θ

α− βθ
τ̃ 2δ,x⋆

.

Since θ𝕊x⋆ = v, by δ → 0, we have τ̃δ,x⋆ → 0 and

lim sup
k→∞

E

[
k

∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]
≤
(
β − α2

)
∥v∥2M .

5.2. Tightness of variance bounds

In this section, we provide examples for which the variance bound of Theorem 5.1 holds
with equality and with a strict inequality. We then discuss how the geometry of range (𝕀−𝕋)
influences the tightness of the inequality. Throughout this section, we consider the setting
where the norm and inner product is ∥ · ∥-norm and ⟨·, ·⟩, with H = Rm, Hi = R, and
I follows uniform distribution on the set of standard unit vectors of H. In this case, the
smallest β we can choose is α = 1/m.

5.2.1. Example: Theorem 5.1(b) holds with equality.

Consider the translation operator 𝕋(x) = x− v. When x0, x1, x2, . . . are the iterates of
(RC-FPI) with 𝕋, then

kVarM

(
xk

k

)
= α (1− α) ∥v∥2

for k = 1, 2, . . . , and the variance bound of Theorem 5.1 holds with equality.
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5.2.2. Example: Theorem 5.1(b) holds with strict inequality.

Define 𝕋 : R2 → R2 as

𝕋 : (x, y) 7→
(
x− 1 + x− y

2
, y − 1 + y − x

2

)
,

which is 1/2-averaged and has the infimal displacement vector (1/2, 1/2).
When (x0, y0), (x1, y1), (x2, y2), . . . are the iterates of (RC-FPI) with 𝕋, then

lim sup
k→∞

kVarM

((
xk, yk

)
k

)
=

1

24
. (6)

On the other hand, the right hand side of the inequality in Theorem 5.1 (b) is

α (1− α) ∥v∥2 = 1

2

(
1− 1

2

)
∥v∥2 = 1

8
.

Proof of Equation (6). An (1/2)−averaged operator 𝕋 in R2 is defined as,

𝕋 : (x, y) 7→
(
x− 1 + x− y

2
, y − 1 + y − x

2

)
,

with the infimal displacement vector v of range 𝕀− 𝕋 as (1/2, 1/2). The RC-FPI by 𝕋

with the distribution as a uniform distribution on {(1, 0), (0, 1)}. The random coordinate
operators are respectively,

𝕋(1,0) : (x, y) 7→
(
x− 1 + x− y

2
, y

)
,

𝕋(0,1) : (x, y) 7→
(
x, y − 1 + y − x

2

)
.

When we set the initial point (x0, y0) as the origin, from the relations

E
[
xk+1

]
= E

[
xk
]
− 1

4
− 1

4
E
[
xk − yk

]
,

E
[
yk+1

]
= E

[
yk
]
− 1

4
+

1

4
E
[
xk − yk

]
,

E
[
xk+1 − yk+1

]
=

1

2
E
[
xk − yk

]
,

each expectations have a value of E
[
xk
]
= E

[
yk
]
= −k/4.

Next, an expectation E
[∥∥xk − yk

∥∥2] has a recurrence relation of

E
[∥∥xk+1 − yk+1

∥∥2] = E(xk,yk)E
[∥∥xk+1 − yk+1

∥∥2 | (xk, yk
)]

= E(xk,yk)

[
1

4

(
xk − yk

)2
+

1

4

]
,
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which obtains E
[∥∥xk − yk

∥∥2] = (1− 4−k
)
/3 as a solution.

Finally, an expectation E
[∥∥xk

∥∥2 + ∥∥yk∥∥2] has a relation

E
[∥∥xk+1

∥∥2 + ∥∥yk+1
∥∥2] = E(xk,yk)

[
1

2

(∥∥𝕋(1,0)

(
xk, yk

)∥∥2 + ∥∥𝕋(0,1)

(
xk, yk

)∥∥2)]
= E

[∥∥xk
∥∥2 + ∥∥yk∥∥2]+ 1

4
− 1

2
E
[
xk + yk

]
− 1

4
E
[∥∥xk − yk

∥∥2] ,
which can be applied inductively, and as a result,

E
[∥∥xk

∥∥2 + ∥∥yk∥∥2] = 1

8
k2 +

1

24
k +

1

9

(
1− 4−k

)
.

From above computations, a variance of
(
xk, yk

)
can be estimated explicitly as

VarM
(
xk, yk

)
=

1

24
k +

1

9

(
1− 4−k

)
.

Thus, lim supk→∞ kVarM
(
(xk, yk)/k

)
is

lim sup
k→∞

kVarM

((
xk, yk

)
k

)
=

1

24
,

5.3. Relationship between the variance and the range set.

Consider the three convex sets A, B, and C in Figure 1 as a subset of H = R2. The
explicit definitions are

A = {(x, y) | x ≤ −10, y ≤ −5}

B =
{
(x, y) | dist ((x, y), 3A) ≤ 2

√
52 + 102

}
C = {(x, y) | −2x− y ≥ 25} ,

where dist ((x, y), 3A) denotes the (Euclidean) distance of (x, y) to the set 3A = {(3x, 3y) | (x, y) ∈
A}. The minimum norm elements in each set are all identically equal to (−10,−5).

Let 𝕋 = 𝕀 − θProj, where Proj denotes the projections onto A, B, and C. Then 𝕋 is
θ-averaged and range (θ−1(𝕀 − 𝕋)) is equal to A, B, and C, respectively. These sets are
designed for 𝕋 to have the same infimal displacement vector. Figure 2 (left), shows that
the normalized iterates of the three instances have different asymptotic variances despite
identical v. In the experiment, θ was set as 0.2, and as a consequence, v = (−2,−1) is the
infimal displacement vector for each experiments. (RC-FPI) is performed with x0 = (0, 0),
m = 2 and H1 = H2 = R.
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(a) A (b) B (c) C

Figure 1: Visualization A, B, and C as defined in Section 5.2. The grey dot is θ−1v, where v is the infimal
displacement vector of 𝕋 = 𝕀− θProj.
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Figure 2: (Left) Graph of kV̂ar
(
xk/k

)
by k, where V̂ar

(
xk/k

)
is the variance estimate with 10,000 samples.

(Right) Visualization of A, B, and C as red, yellow, green regions and Dz,δ as the hatched area, where the
sets are as defined in Section 5.2. We conjecture that the broader intersection with Dz,δ leads to smaller
asymptotic variance.
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We conjecture that the asymptotic variance is intimately related to the geometry of the
set range (θ−1(𝕀− 𝕋)). For z ∈ Rn and δ > 0, let

Dz,δ =
{
u ∈ R2

∣∣⟨v, u− 𝕊z⟩ ≤ ∥v∥ ∥u− 𝕊z∥ sin δ
}
.

Lemma 5.3 states that eventually, 𝕊xk ∈ Dz,δ for sufficiently large k. Since 𝕊xk ∈
range (θ−1(𝕀 − 𝕋)) for all k, the shaded region in the Figure 2 (right) depicting Dz,δ ∩
range (θ−1(𝕀 − 𝕋)) actually shows the region where 𝕊xk lies for large k. In the proof of
Theorem 5.1, loosely speaking, we establish the upper bound using

−θ (α− βθ)
∥∥𝕊xk − θ−1v

∥∥2
M

≤ 0.

Therefore, the variance can be strictly smaller than the upper bound when
∥∥𝕊xk − θ−1v

∥∥2
M

is large, which can happen when the area of intersection Dz,δ ∩ range (θ−1(𝕀− 𝕋)) is large
near θ−1v. This can be observed in Figure 2, which shows that the range set having large
intersection with Dz,δ have smaller asymptotic variance.

6. Infeasibility detection

In this section, we present the infeasibility detection method for (RC-FPI) using the
hypothesis testing.

Theorem 6.1. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let v be
the infimal displacement vector of 𝕋. Assume I0, I1, . . . is sampled IID from a distribution
satisfying the uniform expected step-size condition (2) with α ∈ (0, 1], and assume (3) holds
with some β > 0 such that β < α/θ. Let x0, x1, x2, . . . be the iterates of (RC-FPI). Then
under the null hypothesis ∥v∥M ≤ δ with nonzero δ, for ϵ that satisfies αδ < ϵ,

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≲

(β − α2) δ2

k(ε− αδ)2

as k → ∞, where v is the infimal displacement vector of 𝕋.

Therefore, for any statistical significance level p ∈ (0, 1), the test∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

with

k ≳
(β − α2) δ2

p (ε− αδ)2

can reject the null hypothesis and conclude that ∥v∥M > δ, which implies that the problem
is inconsistent.
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For the proof of the Theorem 6.1, we begin with the simpler case where v ∈ range (𝕀− 𝕋).
Let ∥v∥M ≤ δ be the null hypothesis with δ satisfying αδ < ϵ. By the triangle inequality,
Markov inequality, and Theorem 5.1, under the null hypothesis,

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≤ P

(∥∥∥∥xk

k
+ αv

∥∥∥∥
M

≥ ε− αδ

)
≤ 1

(ε− αδ)2
E

[∥∥∥∥xk

k
+ αv

∥∥∥∥2
M

]

≲
(β − α2) δ2

k(ε− αδ)2

as k → ∞.
When v /∈ range (𝕀−𝕋), we can still obtain the same (asymptotic) statistical significance

with the same test and the same iteration count k ≳
(β−α2)δ2

p(ε−αδ)2
. Below, we present the full

proof of this general case.

Proof. First by the triangle inequality and Markov inequality,

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≤ P

(∥∥∥∥xk

k
− E

[
xk

k

]∥∥∥∥
M

≥ ε−
∥∥∥∥E [xk

k

]∥∥∥∥
M

)
≤
(
ε−

∥∥∥∥E [xk

k

]∥∥∥∥
M

)−2

VarM

(
xk

k

)
.

Next, let’s bound the term
∥∥E [xk/k

]∥∥
M
. Due to triangle inequality, Jensen’s inequality

and Lemma 4.7 with z0 = x0, we have∥∥∥∥E [xk

k

]∥∥∥∥
M

≤
∥∥∥∥E [xk

k

]
− zk

k

∥∥∥∥
M

+

∥∥∥∥zkk
∥∥∥∥
M

≤ O
(

1√
k

)
+

∥∥∥∥zkk
∥∥∥∥
M

.

By [106, Theorem 3], for any ω > 0, there exist ω-dependent constant Cω such that∥∥∥∥zkk
∥∥∥∥
M

≤ α ∥v∥M +
1

k
Cω + ω.

Thus, ∥∥∥∥E [xk

k

]∥∥∥∥
M

≤ α ∥v∥M +O
(

1√
k

)
+

1

k
Cω + ω.

Substitute this inequality at
∥∥E [xk/k

]∥∥
M

and obtain

kP
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ε

)
≤
(
ε−

∥∥∥∥E [xk

k

]∥∥∥∥
M

)−2

kVarM

(
xk

k

)
≤
(
ε− α ∥v∥M −O

(
1√
k

)
− 1

k
Cω − ω

)−2

kVarM

(
xk

k

)
,
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when choice of ω is sufficiently small and that of k is sufficiently large to keep

ε− α ∥v∥M −O
(

1√
k

)
− 1

k
Cω + ω > 0.

Take a limit supremum by k → ∞. Then by Theorem 5.1,

lim sup
k→∞

kP
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ϵ

)
≤ lim sup

k→∞

(
ε− α ∥v∥M −O

(
1√
k

)
− 1

k
Cω − ω

)−2

kVarM

(
xk

k

)
≤ (β − α2) ∥v∥2M

(ε− α ∥v∥M − ω)2

holds for all sufficiently small ω > 0. Thus, by ω → 0,

lim sup
k→∞

kP
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ϵ

)
≤ (β − α2) ∥v∥2M

(ε− α ∥v∥M)2

Now consider a null hypothesis of ∥v∥M ≤ δ. Under the null hypothesis,

lim sup
k→∞

kP
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ϵ

)
≤ (β − α2)δ2

(ε− αδ)2
,

or in other word,

P
(∥∥∥∥xk

k

∥∥∥∥
M

≥ ϵ

)
≲

(β − α2)δ2

k (ε− αδ)2
,

as k → ∞.

7. Extension to non-orthogonal basis and applications to decentralized optimiza-
tion

Operator splitting methods such as ADMM/DRS [20, 19, 18] or PDHG [107] are fixed-
point iterations with operators that are non-expansive with respect to M -norms where
M ̸= 𝕀, and in such cases, the coordinates form a non-orthogonal basis. Our analyses of
Sections 4 and 5 were mostly general, accommodating any M -norm, with the sole exception
of Lemma 4.1, which only applies to the case where M = 𝕀. In this section, we use the
notion of the Friedrichs angle to extend our analysis to general M -norms. We then apply
our framework to decentralized optimization and present a numerical experiment.
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7.1. Convergence condition in non-orthogonal basis

Let’s modify the underlying space H with extra H0 block, making H as

H = H0 ⊕H1 ⊕H2 ⊕ . . .Hm,

where each Hi is a Hilbert space. Consider two subspaces U1 and U2 of H as

U1 = {(x0, 0, 0, . . . , 0) |x0 ∈ H0} , U2 = {(0, x1, x2, . . . , xm) |xi ∈ Hi, 1 ≤ i ≤ m} ,

so that U1∩U2 = {0}. We further assume that with M -inner product of H, block components
of U2 are orthogonal to each other :

⟨(0, 0, . . . , xi, . . . , 0), (0, 0, . . . , xj, . . . , 0)⟩M = 0, xi ∈ Hi, xj ∈ Hj, 1 ≤ i < j ≤ m.

Note that every vector in H can be uniquely expressed as a linear combination of vectors
in U1 and U2. Given 𝕋 : H → H and 𝕊 = θ−1(𝕀− 𝕋), define 𝔾 and ℍ as

𝕊x = 𝔾x+ℍx, 𝔾x ∈ U1, ℍx ∈ U2

for all x ∈ H. We decompose U2 into m block coordinates, which is also the set of orthogonal
subspaces. (To clarify, the m blocks of U2 are orthogonal with respect to the M -norm.) With
a selection vector I ∈ [0, 1]m, define a randomized coordinate operator as

𝕊I = α𝔾+
m∑
i=1

Iiℍi

𝕋I = 𝕀− θ𝕊I ,

(7)

where ℍi is defined similarly to how 𝕊i was defined in Section 3.
The cosine of the Friedrichs angle cF between U1 and U2 [84] is defined as a smallest

value among c ≤ 1 such that satisfies

|⟨u1, u2⟩M | ≤ c ∥u1∥M ∥u2∥M ∀u1 ∈ U1, u2 ∈ U2.

The RC-FPI by (7) converges, almost surely and in L2, if the cosine of the Friedrichs angle
is sufficiently small.

Theorem 7.1. Let 𝕋 : H → H be θ-averaged with respect to ∥·∥M with θ ∈ (0, 1]. Let v be
the infimal displacement vector of 𝕋. Assume I0, I1, . . . is sampled IID from a distribution
satisfying the uniform expected step-size condition (2) with α ∈ (0, 1]. Let x0, x1, x2, . . . be
the iterates of (RC-FPI) xk+1 = 𝕋Ikxk, where 𝕋Ik is as defined in (7). Let cF be the cosine
of the Friedrichs angle between U1, U2.

(a) If cF ≤
√

1−θ
1−αθ

, then xk/k
L2

→ −αv as k → ∞.

(b) If cF <
√

1−θ
1−αθ

, then xk/k
a.s.→ −αv as k → ∞. (xk/k converges strongly to −αv in

probability 1.) Furthermore, the results of Theorem 5.1 hold.
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7.2. Proof of Theorem 7.1

Lemma 7.2. Suppose the subspaces U1, U2 of H with U1 ∩ U2 = {0} satisfy the condition

|⟨u1, u2⟩M | ≤ cF ∥u1∥M ∥u2∥M , cF ≤
√

1− θ

1− αθ

for any u1 ∈ U1, u2 ∈ U2.
Then, there exists β ≥ 0 such that βθ ≤ α and

EI [uI ] = αu, EI
[
∥uI∥2M

]
≤ β ∥u∥2M

where uI and u are defined as

uI = αg +
m∑
i=1

Iihi, u = g + h, g ∈ U1, h ∈ U2.

Proof. First equation comes from,

EI [uI ] = αg + EI

[
m∑
i=1

Iihi

]
= αg + αh = αu.

The expectation in the second equation is

EI
[
∥uI∥2M

]
= α2 ∥g∥2M + 2E

[〈
m∑
i=1

Iihi, αg

〉
M

]
+ E

∥∥∥∥∥
m∑
i=1

Iihi

∥∥∥∥∥
2

M


= α2 ∥g∥2M + 2 ⟨αg, αh⟩M +

m∑
i=1

E
[
I2
i

]
∥hi∥2M

≤ α2 ∥g∥2M + 2 ⟨αg, αh⟩M +
m∑
i=1

E [Ii] ∥hi∥2M

= α2 ∥g∥2M + 2α2 ⟨g, h⟩M + α ∥h∥2M
= α2 ∥u∥2M + (α− α2) ∥h∥2M .

Note that

∥u∥2M = ∥h∥2M + 2 ⟨h, g⟩M + ∥g∥2M ≥ ∥h∥2M − 2cF ∥h∥M ∥g∥M + ∥g∥2M ≥
(
1− c2F

)
∥h∥2M .

Thus, set β as

β = α2 +
α− α2

1− c2F
.

Then,

EI
[
∥uI∥2M

]
≤ α2 ∥u∥2M + (α− α2) ∥h∥2M ≤

(
α2 +

α− α2

1− c2F

)
∥u∥2M = β ∥u∥2M ,
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with

θβ ≤ θ

(
α +

1− αθ

θ

)
α = α.

Additionally, if cF <
√

1−θ
1−αθ

in Lemma 7.2, we have θβ < α.

Proof of Theorem 7.1. With Lemma 7.2, we know that β is dependent on the value of the
cosine of Friedrichs angle cF as :

EI [uI ] = αu, EI
[
∥uI∥2M

]
≤ β ∥u∥2M , β = α2 +

α− α2

1− c2F
.

Hence, when cF ≤
√

1−θ
1−αθ

, we have β ≤ α/θ, and when cF <
√

1−θ
1−αθ

, we have β < α/θ.

Proof of statement (a). Since cF ≤
√

1−θ
1−αθ

, we have β ≤ α/θ. Therefore, we may use

the result of Lemma 4.7 with z0 = x0.

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
≤ 1

k

(
2
√
αθ (1− αθ)

∥∥𝕊x0
∥∥
M

∥∥𝕊z0∥∥
M

− α

θ
(1− αθ) ∥v∥2M

)
.

When the limit k → ∞ is taken,

lim
k→∞

E

[∥∥∥∥xk

k
− zk

k

∥∥∥∥2
M

]
= 0, lim

k→∞

∥∥∥∥zkk + αv

∥∥∥∥
M

= 0,

where the second equation is from Theorem 2.1. These two limits provide L2 convergence of
normalized iterate, namely

xk

k

L2

→ −αv,

as k → ∞.
Proof of statement (b). Since cF <

√
1−θ
1−αθ

, we have β < α/θ. Thus, from Lemma 4.10,

we can conclude the strong convergence in probability 1,

xk

k

a.s.→ −αv

as k → ∞. Furthermore, since β < α/θ, we now satisfy every conditions of Theorem 5.1.
Thus, identical results of Theorem 5.1 are obtained in this case.
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7.3. Application of Theorem 7.1 in PG-EXTRA

Consider the convex optimization problem

minimize
x∈Rd

m∑
i=1

fi(x), (8)

where fi : Rd → R is closed, convex, and proper function for i = 1, . . . ,m. Consider the
decentralized algorithm PG-EXTRA [108]

xk+1
i = Proxτfi

(∑m
j=1Wijx

k
i − wk

i

)
wk+1

i = wk
i +

1

2

(
xk
i −

∑m
j=1Wijx

k
j

) (PG-EXTRA)

for i = 1, 2, . . . ,m. In decentralized optimization, we use network of agents to compute the
algorithm. If a pair of agents could communicate, we say that they are connected. For each
agents i = 1, 2 . . . ,m, Ni is a set of agents connected to agent i. A matrix W is called a
mixing matrix, and it is a symmetric m by m matrix with Wij = 0 if i ̸= j and j /∈ Ni.

A randomized coordinate-update version of PG-EXTRA randomly chooses i among
1, 2, . . . ,m to update xk

i , while every w1, w2, . . . , wm gets updated at each iterations.

Algorithm 1 RC-PG-EXTRA

for i ∈ {1, 2, . . . ,m} do
Initialize: wi = 0, xi = 0, [Wx]i = 0

end for
for j ∈ {1, 2, . . . ,m} do

Update: wj = wj +
α
2
(xi − [Wx]i)

end for
while Not converged do

Sample: I
for i such that Ii ̸= 0 do

∆xi = Proxτfi ([Wx]i − wi)− xi

Update: xi = xi + Ii∆xi

for j ∈ Ni ∪ {i} do
Send: ∆xi From ith agent to jth agent.
[Wx]j = [Wx]j +Wij∆xi

end for
end for

end while

Note that ∆xi is the only quantity communicated across agents. |Ni| communications
happen each iteration, while values xi, wi, [Wx]i are stored in ith agent.

(PG-EXTRA) is a fixed-point iteration with an averaged operator with respect to M -
norm where M ≠ 𝕀. Under the conditions of Corollary 7.3, the condition regarding the
Friedrichs angle of Theorem 7.1 holds and Algorithm 1 converges.
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Corollary 7.3. Suppose I0, I1, . . . is sampled IID from a distribution satisfying the uniform
expected step-size condition (2) with α ∈ (0, 1]. Consider Algorithm 1 with I = I0, I1, . . .. If
the minimum eigenvalue of the symmetric mixing matrix W ∈ Rm satisfies

λmin(W ) > − α

2− α
,

the normalized iterate of Algorithm 1 converges to −αv, where v is the infimal displacement
vector of (PG-EXTRA), both in L2 and almost surely.

Proof. In the proofs, we use a stack notation for convenience. With stack notation, x ∈ Rm×d

refers

x =


— x⊺

1 —
— x⊺

2 —
...

— x⊺
m —

 , [Wx]i =
m∑
j=1

Wijxj.

(PG-EXTRA) originates from Condat-Vũ [109, 110] with wk = τUuk, where Condat-Vũ
is a method defined as

xk+1 = Proxτf (Wxk − τUuk)

uk+1 = uk +
1

τ
Uxk,

which is a fixed-point iteration with an operator that’s (1/2)-averaged in M -norm. Thus, θ
value in (PG-EXTRA) is θ = 1/2.

The matrix M in (PG-EXTRA) is

M =

[
1
τ
I U
U τI

]
,

where U is a positive semidefinite matrix such that U2 = 1
2
(I −W ). Note that the inner

product in this case is 〈[
x
u

]
,

[
y
v

]〉
M

= tr

([
x
u

]T
M

[
y
v

])
.

Due to the given inner product, two subspaces V1 = (Rm × {0}m)d and V2 = ({0}m × Rm)d

are no longer orthogonal to each other. On the other hand, m subspaces of V1,(
{0}i−1 × R× {0}m−i × {0}m

)d
, i = 1, 2, . . . ,m,

are orthogonal to each other. Inner product between V1 and V2 is constrained as∣∣∣∣〈[x0
]
,

[
0
u

]〉
M

∣∣∣∣ = ∣∣xTUu
∣∣ ≤ λU

max

∥∥∥∥[x0
]∥∥∥∥ ∥∥∥∥[0u

]∥∥∥∥ = λU
max

∥∥∥∥[x0
]∥∥∥∥

M

∥∥∥∥[0u
]∥∥∥∥

M

.
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Since λW
min > −α/(2− α),

λU
max =

√
1− λW

min

2
<

√
1

2− α
=

√
1− 1

2

1− α
2

,

and we may apply Theorem 7.1 with

u ∈ V2 = U1, x ∈ V1 = U2, H0 = Rm×d, H1 = H2 = · · · = Hm = d

and block coordinate update with each orthogonal blocks as(
{0}i−1 × R× {0}m−i × {0}m

)d
, i = 1, 2, . . . ,m,

to conclude Corollary 7.3.

Additionally, here is the infimal displacement vector of (PG-EXTRA).

Lemma 7.4. The infimal displacement vector v = (v1, . . . ,vm) of (PG-EXTRA) is

vi =

[
τ
m

∑m
j=1 gj

−1
2

(
yi −

∑m
j=1Wijyj

)]

for i = 1, . . . ,m, where (y1, y2, . . . , ym) and (g1, g2, . . . , gm) are

argmin
y1,y2,...ym∈Rd

gj∈∂fj(yj),1≤j≤m

∥∥∥∥∥ τm
m∑
j=1

gj

∥∥∥∥∥
2

+
1

2

m∑
i,j=1

Wij ∥yi − yj∥2 .

Proof. Recall that the PG-EXTRA originated from Condat-Vũ, an FPI with

𝕋

[
x
u

]
=

[
Proxτf (Wx− τUu)

u+ 1
τ
Ux

]
which is a non-expansive mapping in M -norm, where

M =

[
1
τ
I U
U τI

]
.

Finding the infimal displacement vector of 𝕋 is equivalent to

argmin
x,u

∥∥∥∥[∆x
∆u

]∥∥∥∥2
M

,

[
∆x
∆u

]
= (𝕀− 𝕋)

[
x
u

]
=

[
x− Proxτf (Wx− τUu)

− 1
τ
Ux

]
.
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From ∆u = − 1
τ
Ux,∥∥∥∥[∆x

∆u

]∥∥∥∥2
M

=
1

τ
∥∆x∥2 + τ ∥∆u∥2 + 2tr

(
∆xTU∆u

)
=

1

τ
∥∆x∥2 + 1

τ
∥Ux∥2 − 2

τ
tr
(
∆xTU2x

)
=

1

τ

[
∥∆x∥2 + 1

2
tr
(
xT (I −W )x

)
− tr

(
∆xT (I −W )x

)]
.

When ∆x = xC + x⊥, where xC = 1x̃T for some x̃ ∈ Rd and 1Tx⊥ = 0, we have

∆x = x− Proxτf (Wx− τUu)

⇔ xC = (x− x⊥)− Proxτf (W (x− x⊥)− (τUu−Wx⊥)).

Since {
τUu : u ∈ Rm×d

}
=
{
w ∈ Rm×d : 1Tw = 0

}
, 1TWx⊥ = 1Tx⊥ = 0,

we have τUu−Wx⊥ = τU ũ for some ũ. Thus,[
∆(x− x⊥)

∆ũ

]
=

[
xC

− 1
τ
U (x− x⊥)

]
,

and its M -norm is∥∥∥∥[∆(x− x⊥)
∆ũ

]∥∥∥∥2
M

=
1

τ

[
∥xC∥2 +

1

2
tr
(
(x− x⊥)

T (I −W ) (x− x⊥)
)]

.

Due to the inequality ∥x⊥∥2 ≥ tr
(
x⊥

T (I −W )x⊥
)
with equality only when x⊥ = 0,∥∥∥∥[∆x

∆u

]∥∥∥∥2
M

=
1

τ

[
∥∆x∥2 + 1

2
tr
(
xT (I −W )x

)
− tr

(
∆xT (I −W )x

)]
=

1

τ

[
∥xC∥2 + ∥x⊥∥2 +

1

2
tr
(
xT (I −W )x

)
− tr

(
x⊥

T (I −W )x
)]

≥
∥∥∥∥[∆(x− x⊥)

∆ũ

]∥∥∥∥2
M

,

with equality only when x⊥ = 0. Thus, the infimal displacement vector ṽ of Condat-Vũ
follows a form of

ṽ =

[
vx

vu

]
, vx = 1x̃T ,

for some x̃ ∈ Rd. Now we may consider only the case where ∆x = 1xT . In this case,∥∥∥∥[∆x
∆u

]∥∥∥∥2
M

=
1

τ

[
∥∆x∥2 + 1

2
tr
(
xT (I −W )x

)]
,
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and the relation
1xT = x− Proxτf (Wx− τUu)

must hold. This relation is equivalent to

0 ∈ τ∂f(x− 1xT ) + x− 1xT −Wx+ τUu.

By taking direction of 1 to consideration,

0 ∈ τ1T∂f(x− 1xT ) + 1Tx−mxT − 1Tx.

When we set the new variable y = x− 1xT , xT is expressed as

xT ∈ τ
1

m
1T∂f(y),

which makes for some g ∈ ∂f(y),∥∥∥∥[∆x
∆u

]∥∥∥∥2
M

=
1

τ

[
∥∆x∥2 + 1

2
tr
(
yT (I −W )y

)]
=

1

τ

[
τ 2

1

m

∥∥1Tg
∥∥2 + 1

2
tr
(
yT (I −W )y

)]
.

Thus, the infimal displacement vector of Condat-Vũ is

ṽ =

[
τ 1
m
11Tg

− 1
τ
Uy

]
,

where y and g are

argmin
y∈Rm×d

g∈∂f(y)

[
τ 2

1

m

∥∥1Tg
∥∥2 + 1

2
tr
(
yT (I −W )y

)]
.

As a conclusion, the infimal displacement vector of (PG-EXTRA) is,

vi =

[
τ
m

∑m
j=1 gj

−1
2

(
yi −

∑m
j=1Wijyj

)]

for i = 1, . . . ,m,where (y1, y2, . . . , ym) and (g1, g2, . . . , gm) are

argmin
y1,y2,...ym∈Rd

gj∈∂fj(yj),1≤j≤m

∥∥∥∥∥ τm
m∑
j=1

gj

∥∥∥∥∥
2

+
1

2

m∑
i,j=1

Wij ∥yi − yj∥2 .
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Figure 3: (Left) Network used in our experiment, consisting of m = 40 agents, with agents 2, . . . , 40 densely

connected. (Right) Graph of
∥∥(xk,uk

)
/k + αv

∥∥2 against the communication count for (PG-EXTRA) and
(RC-PG-EXTRA), Algorithm 1.

7.4. Experiment of the infeasible case in PG-EXTRA

We perform an experiment on an instance of (8) using Algorithm 1. Figure 3 shows that
(RC-PG-EXTRA), Algorithm 1, converges to the infimal displacement vector faster in terms
of communication count.

Specifically, define fi : R2 → R for i = 1, · · · ,m as

fi(x) =

{
0 if x ∈ Ci

∞ otherwise.

with C1 = {(x, y) | x ≤ −10} and C2 = C3 = · · · = Cm = {(x, y) | x > 0, xy ≤ −1}. The
network is depicted in Figure 3. We use Metropolis constant edge weight matrix [111, 112]
for our mixing matrix W . Metropolis mixing matrix is a symmetric matrix of the form

Wij =


1

max(|Ni|,|Nj |)+ϵ
if j ∈ Ni

1−
∑

l∈Ni
Wil if j = i

0 otherwise

with ϵ > 0. We choose ϵ = 0.05 in our experiment.
In this setting, the infimal displacement vector has the analytical form :

vi =
bi

2(m− 1 + ϵ)

[
0

u1 − u2

]
, bi =


1 if i = 1

−1 if i = 2

0 if i > 2,

where u1, u2 ∈ Rd is a vector defined as

(u1, u2) = argmin
u1∈C1,u2∈C2

∥u1 − u2∥.
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Calculation of the infimal displacement vector. From Lemma 7.4, the infimal displacement
vector of (PG-EXTRA) is

vi =

[
τ
m

∑m
j=1 gj

−1
2

(
yi −

∑m
j=1Wijyj

)] ,
where (y1, y2, . . . , ym) and (g1, g2, . . . , gm) are

argmin
y1,y2,...ym∈Rd

gj∈∂fj(yj),1≤j≤m

∥∥∥∥∥ τm
m∑
j=1

gj

∥∥∥∥∥
2

+
1

2

m∑
i,j=1

Wij ∥yi − yj∥2 .

Note that the subgradient of the indicator function is the normal cone operator

∂δC(x) = ℕC =

{
∅ if z /∈ C

{y | ⟨y, z − x⟩ ≤ 0,∀z ∈ C} if z ∈ C.

Thus, with the choice gj = 0, the problem of (y1, y2, . . . , ym) is equivalent to

(y1, y2, . . . , ym) = argmin
y1∈C1,y2,...ym∈C2

1

2

m∑
i,j=1

Wij ∥yi − yj∥2 .

Since

m∑
i,j=1

Wij ∥yi − yj∥2

=
1

m− 1 + ϵ
∥y1 − y2∥2 +

m∑
j>2

1

m− 1 + ϵ
∥y2 − yj∥2 +

m∑
i,j>2,i ̸=j

1

m− 2 + ϵ
∥yi − yj∥2 ,

(y1, y2, . . . , ym) take value of y2 = y3 = · · · = ym with

(y1, y2) = argmin
y1∈C1,y2∈C2

∥y1 − y2∥2 .

Now chose gj = 0 for each j,

vi =

[
0

−1
2

(
yi −

∑m
j=1Wijyj

)]
=

[
0

−1
2

∑m
j ̸=iWij (yi − yj)

]
.

With y2 = y3 = · · · = ym,

v1 =

[
0

1
2(m−1+ϵ)

(y1 − y2)

]
, v2 =

[
0

1
2(m−1+ϵ)

(y2 − y1)

]
, vi =

[
0
0

]
, i > 2.
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Thus, the infimal displacement vector is

vi =
bi

2(m− 1 + ϵ)

[
0
u

]
, bi =


1 if i = 1

−1 if i = 2

0 if i > 2,

with

u = argmin
u∈{u1−u2|u1∈C1,u2∈C2}

∥u∥.

The distribution of I used for the experiment is

P (I) =


0.3 if I = 0.7

0.3×(m−1)
e1

0.7
m−1

if I = ei for some i ≥ 2

0 otherwise,

where ei ∈ Rm is the ith standard unit vector.

8. Conclusion

This work analyzes the asymptotic behavior of the (RC-FPI) and establishes convergence
of the normalized iterates to the infimal displacement vector, and this allows us to use the
normalized iterates to test for infeasibility. We also extend our analyses to the setup with
non-orthogonal basis, thereby making our results applicable to the decentralized optimization
algorithm (PG-EXTRA).

One possible direction of future work would be to use variance reduction techniques in
the style of, say, SVRG [113] or [114] to improve the convergence rate. Such techniques
allow stochastic-gradient-type methods to exhibit a rate faster than O(1/k), and may be
applicable in to the coordinate-update setup accelerate the infeasibility detection.
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