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Review

In previous lecture we proved 2-layer Neural Network structure:

fθ(x) =
N∑
i=1

uiσ(a
T
i x + bi )

forms a dense subset of the set of continuous function. This gives the

mathematical reason of why neural network structure may approximate

the target function well.
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Review

Question. However, we are computationally limited in the size of width.

Size of the layer should be also considered. If so, how well could we

approximate when the width is fixed?

Goal. In this lecture, we will show the result in the form of

∥fθ − f⋆∥2L2(B) ≤ O(1/N), ∃θ ∈ Θ(N).

The norm ∥f ∥2L2(B) is defined as
∫
B(0,B))

(f (x))2dx

5



Table of Contents

Review

Approximation guarantees

6



Approximation guarantees

Theorem

Let B ∈ (0,∞) and σ : R → R be continuous function satisfying

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1, |σ(r)| ≤ 1,∀r ∈ R.

Assume the target function f⋆ : Rd → R satisfies the condition(⋆):

• has an absolutely integrable Fourier representation f̂⋆ : Rd → C, i.e.

f⋆ =

∫
Rd

e−iwT x f̂⋆(w)dw ,∀x ∈ Rd ,

∫
Rd

|f̂⋆(w)|dw < ∞.

• f̂⋆ satisfies Q =
∫
Rd ∥w∥ |f̂⋆(w)|dw < ∞.

Then for any N ∈ N there exists θ ∈ Θ(N+1) such that

∥fθ − f⋆∥2L2(B) ≤
5Q2B2Vol(B(0,B))

N
.
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Proof Idea - 1

Remark. The main idea of proof is to use Erdös’ probabilistic method:

Paul Erdös’ probabilistic method.

Consider a random variable X in D ∈ R≥0.

Then, there exists x ∈ D such that

x ≤ E[X ].
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Proof Idea - 1

With such Idea in mind, here’s a lemma we will use.

Lemma

Let H be a Hilbert space. Let (W,P) be a probability space.

Let h : W → H with ∥h(w)∥ ≤ H < ∞ for P-almost all w ∈ W. Define

f =

∫
W

h(w)dP(w) = Ew∼P [h(w)].

Then, for any N ∈ N, there exists h1, h2, · · · , hN ∈ H such that

f̃ =
N∑
i=1

1

N
hi ,

∥∥∥f̃ − f
∥∥∥2 ≤ H2

N
.
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Proof Idea - 1

Proof.

Sample w1,w2, · · · ,wN
i.i.d∼ P. Define f̂ as:

f̂ =
N∑
i=1

1

N
h(wi ).

Then, from E[f̂ ] = f , we have

E
[∥∥∥f̂ − f

∥∥∥2] = 1

N
E
[
∥h(w1)− f ∥2

]
≤ H2

N
.

Thus, there exists an instance f̃ such that satisfies

f̃ =
N∑
i=1

1

N
hi ,

∥∥∥f̃ − f
∥∥∥2 ≤ H2

N
.
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Proof Idea - 2

Remark. Meaning of Q < ∞: It allows gradient to be evaluated by DCT

∇f⋆(x) = ∇
∫
Rd

e−iwT x f̂⋆(w)dw

=

∫
Rd

∇e−iwT x f̂⋆(w)dw

=

∫
Rd

−iwe−iwT x f̂⋆(w)dw .

Also, |∇f⋆(x)| ≤ Q < ∞.
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Proof Idea - 2

Furthermore, we can obtain the following result.

Lemma

Let B ∈ (0,∞) and f⋆ satisfy the condition(⋆). Then, there exists

ϕ : Rd → [0, 2π) and a probability measure P on Rd × R such that it is

absolutely continuous with respect to the Lebesgue measure and

f⋆(x)− f⋆(0) = 2BQ

∫
Rd×R

sin(b − ϕ(w))1{w tx+b≥0}dP(w , b)

for all x ∈ B(0,B).
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Proof Idea - 2

Abstract proof.

Define ϕ as f̂⋆(w) = e−iϕ(w)|f̂⋆(w)|. Then, by taking a real part,

f⋆(x)− f⋆(0) =

∫
Rd

(
cos(wT x + ϕ(w))− cos(ϕ(w))

)
|f̂⋆(w)|dw .

Next, we rewrite cos(wT x + ϕ(w))− cos(ϕ(w)) as

−
∫ B∥w∥

0

1{wT x≥b} sin(b+ϕ(w))db+

∫ 0

−B∥w∥
1{b≥−wT x} sin(b+ϕ(w))db.

Define dP ∝ 1−B∥w∥≤b≤0|f̂⋆(w)|dbdw and use f̂⋆(w) = ¯̂f⋆(−w), then

f⋆(x)− f⋆(0) = 2BQ

∫
Rd×R

sin(b − ϕ(w))1{w tx+b≥0}dP(w , b).
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Proof Idea - 3

For the last step of the proof, we will use a function fδ to form a relation

∥fδ − f⋆ + f⋆(0)∥2 ≤ ϵ

(
=

(
√
5− 2)2B2Q2Vol(B(0,B)))

N

)

alongside with a relation induced from the first lemma

∥fθ − fδ∥2 ≤
4B2Q2Vol(B(0,B)))

N
.

Remark. Note that the number 5 is quite arbitrary. The theorem also

holds for any number larger than 4.
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Proof Idea - 3

Lemma

Let σ satisfy the assumptions of the theorem, and assume |s(w , b)| ≤ 1

for all w , b. A function h follows a form of

h(x) =

∫
Rd×R

s(w , b)1{wT x+b≥0}dP(w , b),

where P is a probability measure that is absolutely continuous with

respect to the Lebesgue measure.

Then for any δ > 0, there are sδ and a probability measure Pδ such that

hδ(x) =

∫
Rd×R

sδ(w , b)σ(wT x + b)dPδ(w , b), |sδ(w , b)| ≤ 1,∀w , b,

where hδ satisfies ∥hδ − h⋆∥L2(B)
δ→0−→ 0.
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Proof Idea - 3

Proof.

By dominated convergence theorem, we have∫
Rd×R

(s(w , b))2
(
σ

(
wT x

δ
+

b

δ

)
− 1{wT x+b≥0}

)2

dP(w , b)
δ→0−→ 0.

Define sδ and a probability measure Pδ using the change of variables

w̃ = w/δ, b̃ = b/δ, sδ(w̃ , b̃) = s(δw̃ , δb̃),

as in conclusion,

hδ(x) =

∫
Rd×R

sδ(w̃ , b̃)σ(w̃T x + b̃)dPδ(w̃ , b̃)

=

∫
Rd×R

s(w , b)σ

(
wT x

δ
+

b

δ

)
dP(w , b).
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Proof of the Theorem

Now let’s sum up the results we’ve shown

Proof of the main theorem.

• With s(w , b) = sin(b − ϕ(w)), |s(w , b)| ≤ 1 for all w , b and

f⋆(x)− f⋆(0) = 2BQ

∫
Rd×R

s(w , b)1{w tx+b≥0}dP(w , b).

• There exists fδ = 2BQ
∫
sδ(w , b)σ(wT x + b)dPδ(w , b) that satisfies

∥fδ − (f⋆ − f⋆(0))∥2 ≤
(
√
5− 2)2B2Q2Vol(B(0,B)))

N
.

• We know that there exists fθ′(x) =
∑N

i=1 s
δ(wi , bi )σ(w

T
i x + bi ) with

∥fδ − fθ′∥2 ≤ 4B2Q2Vol(B(0,B)))
N

.
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Proof of the Theorem

Proof of the main theorem.

Thus, choose the coefficients λi as λi = sδ(wi , bi ) with

λN+1 =
f⋆(0)

σ(bN+1)
, wN+1 = 0, σ(bN+1) ̸= 0.

Then with the triangular inequality, fθ defined as

fθ(x) =
N+1∑
i=1

λiσ(w
T
i x + bi )

satisfies

∥fθ − f ⋆∥2L2(B) ≤
5B2Q2Vol(B(0,B)))

N
.
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