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Linear Regression

Consider, input x ∈ Rd and output y ∈ R following a model:

y = aT x + b.

Traditionally, we estimate a, b using Least squares.
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Features

We can perform linear regression multiple times:

yi = aTi x + bi ,

and get a value of multiple features in return. For the simplicity,

y = Ax + b.

Now, the idea is predict the outcome using the generated features.

aT (Ax + b) + b′.

Or, we can apply such idea repeatedly:

y = A(n)(A(n−1)(A(n−2)(· · · (A(1)x + b(1)) · · ·+ b(n−2)) + b(n−1)) + b(n).
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Activation function

Problem. Such model is equivalent to the linear regrassion.

y = Ax + b.

Solution. This is why we use nonlinear activation function:

σ : R → R, σ(x)i := σ(xi ).

Some practical examples are ReLU, Sigmoid, arctan.
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Neural Network Structure

Using the activation function, we define a Neural Network Structure as:

y = A(n)σ(A(n−1)σ(· · ·σ(A(1)x + b(1)) · · ·+ b(n−1)) + b(n).

We define depth of the Neural Network as n value. We call each

A(i) ·+b(i)

as layers. The depth of Neural Network system is the number of layers.

Also, we call a width of Neural Network as the size of A(i) matrix.

Example. A N-width, 2-layer Neural Network can be written in form of

fθ(x) =
N∑
i=1

uiσ(a
T
i x + bi ).
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2-layer Neural Network

Remark. A N-width, 2-layer Neural Network can be written in form of

fθ(x) =
N∑
i=1

uiσ(a
T
i x + bi ).

Here, θ is the parameter vector,

θ = (u, a, b) ∈ Θ(N) = RN+N×d+N .

Goal. The goal of this section is to prove 2-layer Neural Network system

is dense subset of the set of continuous functions with ∥·∥∞.
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Universal Approximation Theorem

Theorem (Universal Approximation Theorem)

Let σ : R → R be a continuous function satisfying:

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1.

Let the domain Ω ⊂ Rd be compact. Then the class of functions⋃
N∈N

{fθ}θ∈Θ(N)
= span{σ(aT x + b) : a ∈ Rd , b ∈ R}.

is dense in (C(Ω), ∥·∥∞).
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Universal Approximation Theorem

Question. Isn’t compactness of Ω too strong?

Answer. It is sufficient. For example, consider a image classification.

In this case, the domain of input is [0, 256]n×m, a compact set.
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Proof of UAT

Idea of Proof.

The proof of Universal Approximation Theorem is done in two steps.

1. An activation function σ that satisfies

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1

is a discriminatory function.

2. When σ is discriminatory, then

span{σ(aT x + b) : a ∈ Rd , b ∈ R} = (C(Ω), ∥·∥∞).
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Discriminatory function

Definition (Discriminatory function)

A function σ : R → R is discriminatory if[
∀a, b,

∫
Ω

σ(aT x + b)dµ(x) = 0

]
⇒ µ = 0,

for (finite signed regular Borel) measure µ ∈ M(Ω).
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Riesz Representation Theorem

Theorem (Riesz-Markov-Kakutani Representation Theorem)

Let Ω ∈ Rd be compact. Then for any bounded linear functional L on

C(Ω), there is a unique signed regular Borel measure µ on Ω such that

L[f ] =

∫
Ω

f (x)dµ(x), f in ∈ C(Ω).

Remark. When we write Lµ[f ] :=
∫
Ω
f (x)dµ(x), σ is discriminatory if[

Lµ[σ(a
T ·+b)] = 0 for all a, b

]
⇒ Lµ = 0.
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Part 1 of Proof

Lemma

A function σ that satisfies

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1

is a discriminatory function.
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Part 1 of Proof

Proof.

1. Define Ha,b := {x : aT x + b > 0} and ∂Ha,b := {x : aT x + b = 0}.

2. Define ϕa,b(x) := σ(aT x +b). Then, ϕ a
δ ,

b
δ

δ→0−→ γt :=


1 Ha,b

σ(t) ∂Ha,b

0 o.w .

.

3. Since σ is bounded, by Dominated convergence theorem,

Lµ
[
ϕ a

δ ,
b
δ

]
δ→0−→ Lµ [γt ] = µ(Ha,b) + σ(t)µ(∂Ha,b).

4. Suppose Lµ[ϕa,b] = 0 for all a, b.

Then, µ(Ha,b) = µ(∂Ha,b) = 0 since σ is non-constant.

5. For any step function s, Lµ[s(a
T ·)] = 0.

6. By DCT, Lµ[sin(a
T ·)] = Lµ[cos(a

T ·)] = 0.

7. µ = 0 since its Fourier transform µ̂(x) =
∫
Ω
e ia

T xdµ(x) = 0.

17



Part 2 of Proof

Lemma

When σ is discriminatory, then

S = (C(Ω), ∥·∥∞),

where

S = span
{
σ(aT x + b) : a ∈ Rd , b ∈ R

}
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Part 2 of Proof

Proof.

Proof by contradiction. Suppose S = C(Ω) and ∃g ∈ C(Ω) \ S .
1. Define a bounded linear functional L : S

⊕
span(g) → R as:

L[s + λg ] = λ, s ∈ S .

2. By Hahn-Banach Extension Theorem, extend L to L : C(Ω) → R.

3. By Riesz Representation Theorem, corresponding µL exists.

4. Since L = 0 on S , we have L[σ(aT x + b)] = 0.

5. Since σ is discriminatory, µL = 0. Thus, L = 0 on C(Ω).
Thus, L[s + λg ] = λ ̸= 0 yields contradiction.
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Extension to non-continuous function

Remark. However, most of the target functions of the given problem is

not continuous. For example, in classification, f∗ : Ω → {1, 2, · · · , k}.

Solution. Lusin’s theorem may solve such problem.

Theorem (Lusin’s Theorem)

Let Ω ⊂ Rd be compact. Let f : Ω → R be a measurable function. For

any ϵ > 0, there exists a continuous function fϵ and Ω′ ⊆ Ω such that

Vol(Ω \ Ω′) < ϵ, f (x) = fϵ(x),∀x ∈ Ω′.
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Dense in Lp

We have established that Sd is dense in (C(Ω), ∥·∥∞).

Question. Can same be obtained on the Lebesgue Lp space?

Answer. Sadly, no.

Theorem

Let d ≥ 2. For any Lebesgue measurable σ, any nonzero g ∈ Sd satisfies

∥g∥Lp = ∞, p ∈ [1,∞).
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Dense in Lp

Goal. However, with finite nonnegative measure µ, we can make Sd

dense in Lp(µ) for p ∈ [1,∞).

Theorem

Let σ : R → R be a continuous function satisfying:

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1.

Let the domain Ω ⊂ Rd be compact. Then the class of functions

Sd = span{σ(aT x + b) : a ∈ Rd , b ∈ R}.

is dense in Lp(µ).
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Generalization of UAT

Remark. The assumption used in UAT is quite strong.

lim
r→−∞

σ(r) = 0, lim
r→∞

σ(r) = 1.

It is not satisfied in widely used activation functions such as ReLU.

Goal. The result of Universal Approximation Theorem also holds for

non-polynomial continuous σ.
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Stone-Weierstrass Theorem

Theorem (Stone-Weierstrass Theorem)

Let Ω ⊂ Rd be compact. Let F ⊆ (C(Ω), ∥·∥∞) be a subalgebra with

nonzero constant function c ∈ F . Then, F is dense if and only if

∀x , y ∈ Ω with x ̸= y, ∃f ∈ F such that f (x) ̸= f (y).
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Stone-Weierstrass Theorem

Let’s define a new set of functions:

gθ(x) =
N∑
i=0

ui

Mi∏
j=1

σ(aTij x + bij).

We can see that set of all function in form of gθ forms an algebra.

Corollary

The set of functions {gθ : θ ∈ R∗} is dense in (C(Ω), ∥·∥∞).

Remark. gθ is not a Neural Network form.

Corollary

The set of functions
⋃

N∈N{fθ}θ∈Θ(N)
is dense in (C(Ω), ∥·∥∞) if σ = sin.
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Generalization of UAT

Goal. The goal is to prove in general case, when σ is non-polynomial.

Theorem

Let σ : R → R be a non-polynomial continuous function.

Let the domain Ω ⊂ Rd be compact. Then the class of functions

Sd =
⋃
N∈N

{fθ}θ∈Θ(N)
= span{σ(aT x + b) : a ∈ Rd , b ∈ R}.

is dense in (C(Ω), ∥·∥∞).
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Reduction to 1-dimension

Idea. First let’s simplify the problem into 1-dimension.

Lemma

Let σ ∈ C(R) makes S1 dense in (C(K ), ∥·∥∞) for any compact K ⊂ R.
Then, Sd is dense in (C(Ω), ∥·∥∞) for any compact Ω ⊂ Rd .
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Reduction to 1-dimension

Proof.

Choose any target function f⋆ ∈ C(Ω).
1. Since span{sin(aT x + b) : a ∈ Rd , b ∈ R} is dense in Ω ⊂ Rd ,∣∣∣∣∣f⋆(x)−

N∑
i=1

ui sin(a
T
i x + bi )

∣∣∣∣∣ < ϵ

2
, ∀x ∈ Ω.

2. Let D := supx∈Ω,i∈[N] |aTi x |. Since S1 is dense in C([−D,D]),∣∣ui sin(aTi x + bi )− fθi (a
T
i x)

∣∣ ≤ ϵ/2N

3. Thus, there exists fθ ∈ Sd such that |f⋆(x)− fθ(x)| < ϵ for all x ∈ Ω.
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Case: σ ∈ C∞(R)

Let’s begin with the simple case where σ ∈ C∞(R).

Lemma

Let σ : R → R be a non-polynomial C∞(R) function.
Let the domain K ⊂ R be compact. Then the class of functions

S1 = span{σ(ax + b) : a ∈ R, b ∈ R}.

is dense in (C(K ), ∥·∥∞).
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Case: σ ∈ C∞(R)

Proof.

1. For all t ∈ R, xσ′(t) ∈ S1 since the compactness of K gives

xσ′(t) =
d

ds
σ(xs + t)

∣∣∣∣
s=0

= lim
h→0

σ(xh + t)− σ(t)

h
∈ S1.

2. Similarly, for all k ∈ N and t ∈ R, xkσ(k)(t) ∈ S1.

3. Since σ is non-polynomial, there exists t that σ(k)(t) ̸= 0. Thus,

xk ∈ S1, ∀k ∈ N.

4. From S-W Thm, span{xk : k ∈ N} is dense in (C(K ), ∥·∥∞).

5. Since span{xk : k ∈ N} ⊆ S1, S1 is dense in (C(K ), ∥·∥∞).
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Generalization of UAT

We will use the result with σ ∈ C∞(R) assumption using the mollifier ϕδ:

ϕδ :=
1

δ
∫
R Ψ(t)dt

Ψ(t/δ), Ψ(t) :=

exp
(
− 1

1−t2

)
t ∈ (−1, 1)

0 otherwise
.

When the continuous function σ is given, define C∞(R) function σδ as:

σδ(r) :=

∫
R
σ(r − t)ϕδ(t)dt ∈ C∞(R).

We can check that for a compact K ⊂ R, σδ is close to σ with small δ:

lim
δ→0

[
sup
r∈K

|σδ(r)− σ(r)|
]
= 0
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Generalization of UAT

Proof.

We can show following two facts.

• σδ ∈ S1 = span{σ(ax + b) : a ∈ R, b ∈ R}.
(It can be shown using Riemann sum of σδ(r) =

∫
R σ(r − t)ϕδ(t)dt.)

• Since σ is non-polynomial, for each k ∈ N there exist δ > 0 such

that σδ is not a polynomial of degree at most k .

(Set of polynomials of degree at most k is closed set, and σδ
δ→0→ σ.)

This gives

span{xk : k ∈ N} ⊆
⋃
δ>0

span{σδ(sr + t) : s, t ∈ R} ⊆ S1

since xkσ(k)(t) ∈ S1 and we can make σ(k)(t) ̸= 0.

Finally, by S-W Thm, span{xk : k ∈ N} = C(K ) concludes the proof.

33



Table of Contents

Neural Network Structure

Dense in L∞

Universal Approximation Theorem

Generalization of UAT

Conclusion

34



Conclusion

Throughout this lecture we proved 2-layer Neural Network structure:

fθ(x) =
N∑
i=1

uiσ(a
T
i x + bi )

forms a dense subset of the set of continuous function. This gives the

mathematical foundation of why neural network structure may

approximate the target function well.

Next lecture. In the next lecture we will quantify the approximation

capability. We will show that (in 2-layer NN) the error can be controlled

in the scale of O(1/N), the inverse of width.
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