Mathematical Deep Learning Theory

Lec 1: Universal Approximation Theorem

Jinhee Paeng

Oct 5, 2023

Seoul National University

Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem Generalization of UAT

Conclusion

Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem

Generalization of UAT

Conclusion

Linear Regression

Consider, input $x \in \mathbb{R}^d$ and output $y \in \mathbb{R}$ following a model:

$$y = a^T x + b$$

Traditionally, we estimate *a*, *b* using *Least squares*.

Features

We can perform *linear regression* multiple times:

$$y_i = a_i^T x + b_i,$$

and get a value of multiple features in return. For the simplicity,

$$y = Ax + b.$$

Now, the idea is predict the outcome using the generated features.

$$a^T(Ax+b)+b'.$$

Or, we can apply such idea repeatedly:

$$y = A^{(n)}(A^{(n-1)}(A^{(n-2)}(\cdots(A^{(1)}x+b^{(1)})\cdots+b^{(n-2)})+b^{(n-1)})+b^{(n)})$$

Problem. Such model is equivalent to the linear regrassion.

$$y = Ax + b.$$

Solution. This is why we use nonlinear *activation function*:

$$\sigma: \mathbb{R} \to \mathbb{R}, \quad \sigma(x)_i \coloneqq \sigma(x_i).$$

Some practical examples are ReLU, Sigmoid, arctan.

Using the activation function, we define a Neural Network Structure as:

$$y = A^{(n)}\sigma(A^{(n-1)}\sigma(\cdots\sigma(A^{(1)}x+b^{(1)})\cdots+b^{(n-1)})+b^{(n)}.$$

We define *depth* of the *Neural Network* as n value. We call each

 $A^{(i)} \cdot + b^{(i)}$

as *layers*. The depth of Neural Network system is the number of layers. Also, we call a *width* of Neural Network as the size of $A^{(i)}$ matrix.

Example. A N-width, 2-layer Neural Network can be written in form of

$$f_{\theta}(x) = \sum_{i=1}^{N} u_i \sigma(a_i^{\mathsf{T}} x + b_i).$$

Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem Generalization of UAT

Conclusion

Remark. A N-width, 2-layer Neural Network can be written in form of

$$f_{\theta}(x) = \sum_{i=1}^{N} u_i \sigma(a_i^{\mathsf{T}} x + b_i).$$

Here, θ is the parameter vector,

$$\theta = (u, a, b) \in \Theta_{(N)} = \mathbb{R}^{N + N \times d + N}$$

Goal. The goal of this section is to prove 2-layer Neural Network system is *dense* subset of the set of continuous functions with $\|\cdot\|_{\infty}$.

Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem

Generalization of UAT

Conclusion

Theorem (Universal Approximation Theorem)

Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying:

$$\lim_{r\to-\infty}\sigma(r)=0,\quad \lim_{r\to\infty}\sigma(r)=1.$$

Let the domain $\Omega \subset \mathbb{R}^d$ be compact. Then the class of functions

$$\bigcup_{N\in\mathbb{N}} \{f_{\theta}\}_{\theta\in\Theta_{(N)}} = \operatorname{span}\{\sigma(a^{T}x+b): a\in\mathbb{R}^{d}, b\in\mathbb{R}\}.$$

is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$.

Question. Isn't compactness of Ω too strong?

Answer. It is sufficient. For example, consider a image classification.

In this case, the domain of input is $[0, 256]^{n \times m}$, a compact set.

Idea of Proof.

The proof of Universal Approximation Theorem is done in two steps.

1. An activation function σ that satisfies

$$\lim_{r \to -\infty} \sigma(r) = 0, \quad \lim_{r \to \infty} \sigma(r) = 1$$

is a *discriminatory* function.

2. When σ is *discriminatory*, then

$$\overline{\operatorname{span}\{\sigma(a^{\mathsf{T}}x+b):a\in\mathbb{R}^{d},b\in\mathbb{R}\}}=(\mathcal{C}(\Omega),\left\|\cdot\right\|_{\infty}).$$

Definition (Discriminatory function)

A function $\sigma: \mathbb{R} \to \mathbb{R}$ is *discriminatory* if

$$egin{bmatrix} orall a, b, & \int_\Omega \sigma(a^\mathsf{T} x + b) d\mu(x) = 0 \end{bmatrix} \Rightarrow \mu = 0,$$

for (finite signed regular Borel) measure $\mu \in \mathcal{M}(\Omega)$.

Theorem (Riesz-Markov-Kakutani Representation Theorem)

Let $\Omega \in \mathbb{R}^d$ be compact. Then for any bounded linear functional L on $C(\Omega)$, there is a unique signed regular Borel measure μ on Ω such that

$$L[f] = \int_{\Omega} f(x) d\mu(x), \quad f \text{ in } \in \mathcal{C}(\Omega).$$

Remark. When we write $L_{\mu}[f] \coloneqq \int_{\Omega} f(x) d\mu(x)$, σ is *discriminatory* if

$$[L_{\mu}[\sigma(a^T \cdot +b)] = 0 \text{ for all } a, b] \Rightarrow L_{\mu} = 0.$$

Lemma

A function σ that satisfies

$$\lim_{r \to -\infty} \sigma(r) = 0, \quad \lim_{r \to \infty} \sigma(r) = 1$$

is a discriminatory function.

Part 1 of Proof

Proof.

1. Define
$$H_{a,b} := \{x : a^T x + b > 0\}$$
 and $\partial H_{a,b} := \{x : a^T x + b = 0\}.$
2. Define $\phi_{a,b}(x) := \sigma(a^T x + b)$. Then, $\phi_{\frac{a}{\delta}, \frac{b}{\delta}} \xrightarrow{\delta \to 0} \gamma_t := \begin{cases} 1 & H_{a,b} \\ \sigma(t) & \partial H_{a,b} \\ 0 & o.w. \end{cases}$

3. Since σ is bounded, by Dominated convergence theorem,

$$L_{\mu}\left[\phi_{\frac{a}{\delta},\frac{b}{\delta}}\right] \stackrel{\delta \to 0}{\longrightarrow} L_{\mu}\left[\gamma_{t}\right] = \mu(H_{a,b}) + \sigma(t)\mu(\partial H_{a,b})$$

- 4. Suppose $L_{\mu}[\phi_{a,b}] = 0$ for all a, b. Then, $\mu(H_{a,b}) = \mu(\partial H_{a,b}) = 0$ since σ is non-constant.
- 5. For any step function s, $L_{\mu}[s(a^T \cdot)] = 0$.
- 6. By DCT, $L_{\mu}[\sin(a^{T} \cdot)] = L_{\mu}[\cos(a^{T} \cdot)] = 0.$

7. $\mu = 0$ since its Fourier transform $\hat{\mu}(x) = \int_{\Omega} e^{ia^T x} d\mu(x) = 0$.

Lemma

When σ is discriminatory, then

$$\overline{S} = (\mathcal{C}(\Omega), \left\|\cdot\right\|_{\infty}),$$

where

$$S = ext{span} \left\{ \sigma(a^T x + b) : a \in \mathbb{R}^d, b \in \mathbb{R} \right\}$$

Proof.

Proof by contradiction. Suppose $\overline{S} = C(\Omega)$ and $\exists g \in C(\Omega) \setminus \overline{S}$.

1. Define a bounded linear functional $L: \overline{S} \bigoplus \operatorname{span}(g) \to \mathbb{R}$ as:

$$L[s+\lambda g]=\lambda, \quad s\in \overline{S}.$$

2. By Hahn-Banach Extension Theorem, extend L to $\overline{L} : \mathcal{C}(\Omega) \to \mathbb{R}$.

3. By Riesz Representation Theorem, corresponding $\mu_{\overline{L}}$ exists.

- 4. Since $\overline{L} = 0$ on \overline{S} , we have $\overline{L}[\sigma(a^T x + b)] = 0$.
- 5. Since σ is discriminatory, $\mu_{\overline{L}} = 0$. Thus, $\overline{L} = 0$ on $\mathcal{C}(\Omega)$.

Thus, $L[s + \lambda g] = \lambda \neq 0$ yields contradiction.

Remark. However, most of the target functions of the given problem is not continuous. For example, in *classification*, $f_* : \Omega \to \{1, 2, \dots, k\}$.

Solution. Lusin's theorem may solve such problem.

Theorem (Lusin's Theorem)

Let $\Omega \subset \mathbb{R}^d$ be compact. Let $f : \Omega \to \mathbb{R}$ be a measurable function. For any $\epsilon > 0$, there exists a continuous function f_{ϵ} and $\Omega' \subseteq \Omega$ such that

 $Vol(\Omega \setminus \Omega') < \epsilon, \qquad f(x) = f_{\epsilon}(x), \forall x \in \Omega'.$

We have established that S^d is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$.

Question. Can same be obtained on the Lebesgue L^p space?

Answer. Sadly, no.

Theorem

Let $d \ge 2$. For any Lebesgue measurable σ , any nonzero $g \in S^d$ satisfies

 $\|g\|_{L^p} = \infty, \quad p \in [1,\infty).$

Goal. However, with finite nonnegative measure μ , we can make S^d dense in $L^p(\mu)$ for $p \in [1, \infty)$.

Theorem

Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying:

$$\lim_{r \to -\infty} \sigma(r) = 0, \quad \lim_{r \to \infty} \sigma(r) = 1.$$

Let the domain $\Omega \subset \mathbb{R}^d$ be compact. Then the class of functions

$$S^d = \operatorname{span} \{ \sigma(a^T x + b) : a \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

is dense in $L^p(\mu)$.

Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem

Generalization of UAT

Conclusion

Remark. The assumption used in *UAT* is quite strong.

$$\lim_{r\to-\infty}\sigma(r)=0,\quad \lim_{r\to\infty}\sigma(r)=1.$$

It is not satisfied in widely used activation functions such as ReLU.

Goal. The result of *Universal Approximation Theorem* also holds for non-polynomial continuous σ .

Theorem (Stone-Weierstrass Theorem)

Let $\Omega \subset \mathbb{R}^d$ be compact. Let $\mathcal{F} \subseteq (\mathcal{C}(\Omega), \|\cdot\|_{\infty})$ be a subalgebra with nonzero constant function $c \in \mathcal{F}$. Then, \mathcal{F} is dense if and only if

 $\forall x, y \in \Omega \text{ with } x \neq y, \quad \exists f \in \mathcal{F} \text{ such that } f(x) \neq f(y).$

Let's define a new set of functions:

$$g_{\theta}(x) = \sum_{i=0}^{N} u_i \prod_{j=1}^{M_i} \sigma(a_{ij}^T x + b_{ij}).$$

We can see that set of all function in form of g_{θ} forms an algebra.

Corollary

The set of functions $\{g_{\theta} : \theta \in \mathbb{R}^*\}$ is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$.

Remark. g_{θ} is not a Neural Network form.

Corollary

The set of functions $\bigcup_{N \in \mathbb{N}} \{ f_{\theta} \}_{\theta \in \Theta_{(N)}}$ is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$ if $\sigma = \sin$.

Goal. The goal is to prove in general case, when σ is non-polynomial.

Theorem

Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a non-polynomial continuous function. Let the domain $\Omega \subset \mathbb{R}^d$ be compact. Then the class of functions

$$S^d = \bigcup_{N \in \mathbb{N}} \{f_{\theta}\}_{\theta \in \Theta_{(N)}} = \operatorname{span}\{\sigma(a^T x + b) : a \in \mathbb{R}^d, b \in \mathbb{R}\}.$$

is dense in $(\mathcal{C}(\Omega), \|\cdot\|_{\infty})$.

Idea. First let's simplify the problem into 1-dimension.

Lemma

Let $\sigma \in C(\mathbb{R})$ makes S^1 dense in $(C(K), \|\cdot\|_{\infty})$ for any compact $K \subset \mathbb{R}$. Then, S^d is dense in $(C(\Omega), \|\cdot\|_{\infty})$ for any compact $\Omega \subset \mathbb{R}^d$.

Proof.

Choose any target function $f_{\star} \in \mathcal{C}(\Omega)$.

1. Since $\operatorname{span}\{\sin(a^Tx+b): a \in \mathbb{R}^d, b \in \mathbb{R}\}\$ is dense in $\Omega \subset \mathbb{R}^d$,

$$f_{\star}(x) - \sum_{i=1}^{N} u_i \sin(a_i^T x + b_i) \bigg| < \frac{\epsilon}{2}, \quad \forall x \in \Omega.$$

2. Let $D := \sup_{x \in \Omega, i \in [N]} |a_i^T x|$. Since S^1 is dense in $\mathcal{C}([-D, D])$,

$$|u_i \sin(a_i^T x + b_i) - f_{\theta_i}(a_i^T x)| \leq \epsilon/2N$$

3. Thus, there exists $f_{\theta} \in S^d$ such that $|f_{\star}(x) - f_{\theta}(x)| < \epsilon$ for all $x \in \Omega$.

Let's begin with the simple case where $\sigma \in \mathcal{C}^{\infty}(\mathbb{R})$.

Lemma

Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a non-polynomial $\mathcal{C}^{\infty}(\mathbb{R})$ function. Let the domain $K \subset \mathbb{R}$ be compact. Then the class of functions

$$S^1 = \operatorname{span} \{ \sigma(ax + b) : a \in \mathbb{R}, b \in \mathbb{R} \}.$$

is dense in $(\mathcal{C}(K), \|\cdot\|_{\infty})$.

Proof.

1. For all $t \in \mathbb{R}$, $x\sigma'(t) \in \overline{S^1}$ since the compactness of K gives

$$x\sigma'(t) = \left. \frac{d}{ds}\sigma(xs+t) \right|_{s=0} = \lim_{h \to 0} \frac{\sigma(xh+t) - \sigma(t)}{h} \in \overline{S^1}.$$

- 2. Similarly, for all $k \in \mathbb{N}$ and $t \in \mathbb{R}$, $x^k \sigma^{(k)}(t) \in \overline{S^1}$.
- 3. Since σ is non-polynomial, there exists t that $\sigma^{(k)}(t) \neq 0$. Thus,

$$x^k \in \overline{S^1}, \quad \forall k \in \mathbb{N}.$$

- 4. From S-W Thm, span $\{x^k : k \in \mathbb{N}\}$ is dense in $(\mathcal{C}(\mathcal{K}), \|\cdot\|_{\infty})$.
- 5. Since $\operatorname{span}\{x^k : k \in \mathbb{N}\} \subseteq \overline{S^1}$, S^1 is dense in $(\mathcal{C}(K), \|\cdot\|_{\infty})$.

We will use the result with $\sigma \in \mathcal{C}^{\infty}(\mathbb{R})$ assumption using the *mollifier* ϕ_{δ} :

$$\phi_{\delta} \coloneqq rac{1}{\delta \int_{\mathbb{R}} \Psi(t) dt} \Psi(t/\delta), \quad \Psi(t) \coloneqq egin{cases} \exp\left(-rac{1}{1-t^2}
ight) & t \in (-1,1) \\ 0 & ext{otherwise} \end{cases}$$

When the continuous function σ is given, define $\mathcal{C}^{\infty}(\mathbb{R})$ function σ_{δ} as:

$$\sigma_\delta(r)\coloneqq\int_{\mathbb{R}}\sigma(r-t)\phi_\delta(t)dt\in\mathcal{C}^\infty(\mathbb{R}).$$

We can check that for a compact $K \subset \mathbb{R}$, σ_{δ} is close to σ with small δ :

$$\lim_{\delta\to 0} \left[\sup_{r\in K} |\sigma_{\delta}(r) - \sigma(r)| \right] = 0$$

Generalization of UAT

Proof.

We can show following two facts.

- $\sigma_{\delta} \in \overline{S^1} = \overline{\operatorname{span}}\{\sigma(ax+b) : a \in \mathbb{R}, b \in \mathbb{R}\}.$ (It can be shown using Riemann sum of $\sigma_{\delta}(r) = \int_{\mathbb{R}} \sigma(r-t)\phi_{\delta}(t)dt.$)
- Since σ is non-polynomial, for each k ∈ N there exist δ > 0 such that σ_δ is not a polynomial of degree at most k.
 (Set of polynomials of degree at most k is closed set, and σ_δ ^{δ→0} σ.)

This gives

$$\operatorname{span}\{x^k:k\in\mathbb{N}\}\subseteq\bigcup_{\delta>0}\overline{\operatorname{span}\{\sigma_\delta(sr+t):s,t\in\mathbb{R}\}}\subseteq\overline{S^1}$$

since $x^k \sigma^{(k)}(t) \in \overline{S^1}$ and we can make $\sigma^{(k)}(t) \neq 0$. Finally, by S-W Thm, $\overline{\operatorname{span}\{x^k : k \in \mathbb{N}\}} = \mathcal{C}(K)$ concludes the proof. \Box Neural Network Structure

Dense in L^{∞}

Universal Approximation Theorem

Conclusion

Throughout this lecture we proved 2-layer Neural Network structure:

$$f_{\theta}(x) = \sum_{i=1}^{N} u_i \sigma(a_i^{\mathsf{T}} x + b_i)$$

forms a *dense* subset of the set of continuous function. This gives the mathematical foundation of why neural network structure may approximate the target function well.

Next lecture. In the next lecture we will quantify the approximation capability. We will show that (in 2-layer NN) the error can be controlled in the scale of $\mathcal{O}(1/N)$, the inverse of width.