Coursework Overview: Jinhee Paeng

B.S. in Department of Mathematical Sciences and Statistics, March 2018 - June 2024*

Leave of Absence for Military, May 2022 - February 2024

Fall 2021

- Mathematical and Numerical Optimization
- Stochastic Differential Equations 1
- Introduction to Differential Geometry 2
- Mathematical Statistics 2
- Multivariate Data Analysis and Lab
- Artificial Intelligence and Philosophy

Spring 2021

- Topics in Mathematics 1 (Topological Combinatorics)
- Introduction to Deep Learning
- Algorithms
- Nonparametric Statistics and Lab
- Time Series Analysis and Lab
- Introduction to Bioinformatics

Fall 2020

- Modern Algebra 2
- Introduction to Topology 2
- Complex Function Theory 2
- Data Mining Methods and Lab
- Neural Prosthesis

Spring 2020

- Modern Algebra 1
- Introduction to Topology 1
- Complex Function Theory 1
- Mathematical Statistics 1
- Concepts and Applications in Probability
- Introduction to Computer Science for Biologists

Fall 2019

- Introduction to Mathematical Analysis with practice 2
- Linear Algebra 2
- Differential Equations and Practice
- Logic Design
- Automata Theory

Spring 2019

- Introduction to Mathematical Analysis with practice 1
- Linear Algebra 1
- Number Theory
- Sets and Mathematical Logic

Fall 2018

- Differential and Integral Calculus 2
- Statistical Computing and Lab
- Earth System Science & Earth System Science Lab
- Writing in Science & Technology

Summer 2018

• Biology & Biology Lab

Fall 2018

- Honor Calculus and Practice 1
- Statistics & Statistics Lab
- Physics 1 & Physics Lab 1
- Computer Application for Scientific Computation

Mathematical and Numerical Optimization

Course Information	3341.454 001, Mathematics, Advanced Undergraduate(Year 4), in English
Instructor	Ernest K. Ryu
Grade	A+
References	Convex Optimization by Boyd and Vandenberghe
	Large-Scale Convex Optimization by Ryu and Yin
Subject Matter	Convex set and functions, Convex optimization problems, Convex duality, Primal-
	dual methods, Stochastic coordinate update methods, ADMM-type methods,
	Scaled relative graphs, Distributed and decentralized optimization

Stochastic Differential Equations 1

Course Information	M1407.001000 001, Mathematics, Advanced Undergraduate(Year 3), in English
Instructor	Gerald Trutnau
Grade	A+
References	Instructor's Notes
Subject Matter	Understanding basic ideas and results of stochastic processes and stochastic cal-
	culus. Probability theory based on Measure theory, Brownian motion, Discrete-
	time martingale theory, Continuous-time martingale theory.

Introduction to Differential Geometry 2

Course Information	881.304 001, Mathematics, Advanced Undergraduate(Year 3), in English
Instructor	Otto van Koert
Grade	A-
References	Comprehensive introduction to differential geometry by Spivak
Subject Matter	Tangent planes, Normal vector fields, Surfaces of revolution, Area of surfaces,
	Surface integrals, First and second fundamental form, Geodesic, Curvatures,
	Structure equations, Hilbert theorem, Gauss-Bonnet theorem, Hopf's theorem.

Mathematical Statistics 2

Course Information	326.312 001, Statistics, Advanced Undergraduate(Year 3)
Instructor	Jun Yong Park
Grade	A0
References	Mathematical Statistics by Woochul Kim (Korean Textbook)
Subject Matter	Deeper understanding of limit distributions, including the Central limit theorem,
	Statistical estimation, Testing statistical hypotheses, Nonparametric tests, Suffi-
	cient statistics, Statistical inferences and Normal theory.

Multivariate Data Analysis and Lab

Course Information	326.316 001, Statistics, Advanced Undergraduate(Year 3)
Instructor	Sungkyu Jung
Grade	A-
References	Applied Multivariate Statistical Analysis by R.A. Johnson and D. Winchern
Subject Matter	The focal point of this course is on multivariate data and its analysis. Estimation
	and test on means of multivariate data, Principal component analysis, Factor
	analysis, Cluster, Discriminant analysis.

Artificial Intelligence and Philosophy

Course Information	L0547.002800 001, Philosophy, Undergraduate(Year 1)
Instructor	Wonki Her
Grade	A+
References	Philosophy of Mind by Ian Ravenscroft
Subject Matter	Ontological issues on the possibility of artificial intelligence, Moral status of AI,
	Ethical and social issues involved in designing ethical AI systems, Problems of
	superintelligence, Existential risk.

Topics in Mathematics 1 (Topological Combinatorics)

Course Information	3341.445 001, Mathematics, Advanced Undergraduate(Year 4)
Instructor	Woong Kook
Grade	A+
References	Instructor's Notes
Subject Matter	Graph theory, Discrete Laplace equation, Effective conductance, Information cen- trality, Simplicial (co)homology theory, Topological Data Analysis, Combinatorial Laplacians and combinatorial Hodge theory, Harmonic cycle and applications.

Introduction to Deep Learning

M2177.004300 001, CSE, Advanced Undergraduate(Year 4), in English
Hyun Oh Song
A+
Instructor's Notes
Backpropagation techniques such as Stochastic gradient descent, Initialization
techniques, Regularization techniques such as drop out, Convolutional Neural
Networks (CNN), CNN architectures, Recurrent Neural Networks (RNN), RNN
applications, and other applications including Reinforced learning.

Algorithms

Course Information	4190.407 001, CSE, Advanced Undergraduate(Year 3)
Instructor	Kunsoo Park
Grade	A0
References	Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein
Subject Matter	Correctness, Complexity Analysis, Sorting, Data Structures, Dynamic Program- ming, Greedy Algorithms, Graph Algorithms, String Matching, NP-Completeness.

Nonparametric Statistics and Lab

Course Information	326.414 001, Statistics, Advanced Undergraduate(Year 4)
Instructor	Sungkyu Jung
Grade	A0
References	Introduction to Modern Nonparametric Statistics by Higgins
Subject Matter	Nonparametric methods and distribution-free statistics. Nonparametric estima-
	tion of point and confidence intervals, Location and scale parameter estimation
	of two samples, Nonparametric testing problem of distribution functions.

Time Series Analysis and Lab

Course Information	326.415 001, Statistics, Advanced Undergraduate(Year 4)
Instructor	Sangyeol Lee
Grade	A-
References	Time Series Analysis by Sangyeol Lee (Korean Textbook)
Subject Matter	Moving average, Exponential smoothing, AR, ARMA, and ARIMA models, ARCH
	and GARCH models, Spectral theory, Seasonal effects.

Introduction to Bioinformatics

Course Information	3346.218 001, Biological Science, Advanced Undergraduate(Year 4)
Instructor	Martin Steinegger, Daehee Hwang
Grade	B+
References	Instructor's Notes
Subject Matter	Biological databases, Sequence analysis, Data mining and phylogeny, How to
	analyse data from shotgun sequencing project, EST project and other biological
	methods used in the present genomics and functional genomics.

Fall 2020

Modern Algebra 2

Course Information	881.302 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Dongho Byeon
Grade	A0
References	A first course in abstract algebra by Fraleigh
Subject Matter	Extension fields, Sylow theorems, Free groups, PID and UFD, Factorization, Au-
	tomorphisms of fields, Splitting fields, Galois Theory, Insolvability of the Quintic.

Introduction to Topology 2

Course Information	881.402 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Cheol-Hyun Cho
Grade	A0
References	Algebraic topology by Hatcher
Subject Matter	Fundamental groups, Category, Brouwer fixed-point theorem, Borsuk-Ulam the-
	orem, Van Kampen's theorem, Covering spaces, Universal covering, Deck group,
	Cayley complex, Homology, Chain complex, Chain homotopy, Exact sequence.

Complex Function Theory 2

Course Information	3341.301A 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Sang-Hyuk Lee
Grade	A0
References	Complex analysis by Stein and Shakarchi
Subject Matter	Calculation of Fourier transforms, Weierstrass products, Hadamard factorization
	theorem, Gamma and zeta functions, Prime number theorem, Conformal map-
	pings, Riemann mapping theorem, Schwarz-Christoffel integrals, Elliptic func-
	tions, Weierstrass functions, Jacobi theta functions and their applications.

Data Mining Methods and Lab

Course Information	326.413 001, Statistics, Advanced Undergraduate(Year 4)
Instructor	Taesung Park
Grade	A0
References	Instructor's Notes
Subject Matter	Preprocessing procedures (categorization and sampling), Data mining methods
	(linear regression, logistic regression, decision trees, neural networks, clustering
	and association), Evaluation methods (lift and prediction errors).

Neural Prosthesis

Course Information	430.809 001, Electrical Engineering, Graduate
Instructor	Sung June Kim
Grade	A0
References	Instructor's Notes
Subject Matter	Auditory prosthesis, Visual prosthesis, Motor Prosthesis, Deep Brain Stimulation,
	Cognitive Engineering, Micro-electrode arrays, Circuits and systems, Cultural
	Neuronal Network.

Modern Algebra 1

Course Information	881.301 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Seung Jin Lee
Grade	A0
References	A first course in abstract algebra by Fraleigh
Subject Matter	Isomorphism, Groups, Subgroups, Cycles, Lagrange Theorem, Group action,
	Rings and fields, Integral domain, Fermat's Theorem, Euler's theorem, Field of
	quotients, Polynomial ring, Factorization of polynomials, Prime & maximal ideal.

Introduction to Topology 1

Course Information	881.401 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Cheol-Hyun Cho
Grade	A-
References	Topology by Kahn
Subject Matter	Axiom of choice, Metric space, Topological space, Product topology, Continuity,
	Hausdorff, Compactness, Tychonoff theorem, Connectedness, Countability, Nor-
	mality, Tietze extension, Baire Category, Fundamental group.

Complex Function Theory 1

Course Information	3341.347 001, Mathematics, Advanced Undergraduate(Year 3)
Instructor	Sang-Hyuk Lee
Grade	A-
References	Complex analysis by Stein and Shakarchi
Subject Matter	Goursat's theorem, Cauchy theorem, Morera's theorem, Zeros and poles, Residue
	theorem, Singularities and argument principle, Fourier series, Harmonic func-
	tion, Mean value theorem, Maximal principle, Fourier transform, Paley-Wiener's
	theorem, Jensen's formula, Infinite product, Factorization theorem.

Mathematical Statistics 1

Course Information	326.311 002, Statistics, Advanced Undergraduate(Year 3)
Instructor	Jun Yong Park
Grade	A0
References	Mathematical Statistics by Woochul Kim (Korean Textbook)
Subject Matter	Conditional probability, Central limit theorem, Stochastic independence and
	the distributions of random variables such as Normal, Binomial, Multinomial,
	Gamma, Chi-square, Poisson, and Multivariate Normal variables.

Concepts and Applications in Probability

Course Information	326.211 001, Statistics, Undergraduate(Year 2)
Instructor	Joong-Ho (Johann) Won
Grade	A+
References	A First Course in Probability by Sheldon M. Ross
Subject Matter	Combinatorics, Axioms of probability, Conditional probabilities, Bayes rule, Inde- pendent events, Random variables, Jointly distributed random variable, Proper- ties of expectation, Limit theorems, Markov chains.

Introduction to Computer Science for Biologists

Course Information	3346.330 001, Biological Science, Undergraduate(Year 2)
Instructor	Daehyum Baek
Grade	A+
References	Instructor's Notes
Subject Matter	Object-Oriented Design, P value, Parametric and non-parametric tests, Multiple
	test correction, Biological Databases (NCBI RefSeq, UCSC Genome Browser, miR-
	Base), Transcriptome Analysis, Microarrays, Next-generation sequencing.

Fall 2019

Introduction to Mathematical Analysis with practice 2

Course Information	M1407.000700 001, Mathematics, Undergraduate(Year 2)
Instructor	Insuk Seo
Grade	A+
References	Introduction to Mathematical Analysis by Kim, Kim and Kye (Korean Textbook)
Subject Matter	Uniform convergence, Differentiation and integration of sequence of functions,
	Power series and analytic functions, Weierstrass approximation theorem, Arzela-
	Ascoli theorem, Space of sequences, Improper integral, Functions defined by in-
	tegrals, Gamma function, Fourier series, Lebesgue integral and Fourier series.

Linear Algebra 2

Course Information	300.206A 001, Mathematics, Undergraduate(Year 2)
Instructor	In-Sok Lee
Grade	A0
References	Linear Algebra and Groups by In-Sok Lee (Korean Textbook)
Subject Matter	Orthogonal and unitary operators, Spectral theorem, Isomorphisms and homo-
	morphisms of groups, Various orthogonal groups corresponding to bilinear forms,
	Primary decomposition theorem, Jordan normal form.

Differential Equations and Practice

Course Information	300.204 001, Mathematics, Undergraduate(Year 2)
Instructor	Dongwoo Sheen
Grade	A0
References	Differential Equations and Their Applications by Martin Braun
Subject Matter	First-order linear differential equations, Separable equations, Exact equations,
	Existence-uniqueness theorem, Newton's method, Runge-Kutta method, Method
	of variation of parameters, Laplace transforms, Dirac delta function.

Logic Design

Course Information	M1522.000700 002, CSE, Undergraduate(Year 2)
Instructor	Sungjoo Yoo
Grade	A+
References	Contemporary Logic Design by Randy H. Katz and Gaetano Borriello
Subject Matter	Boolean Algebra, Logic functions, Multilevel combinational logic, Simplifica-
	tion, Regular logic (Mux, decoder), Programmable logic, Sequential logic, Latch,
	Flip/Flop, Register and timing issues, Finite state machine

Automata Theory

Course Information	4190.306 001, CSE, Advanced Undergraduate(Year 3)
Instructor	Kunsoo Park
Grade	BO
References	Introduction to Automata Theory, Languages, and Computation by Hopcroft, Motwani and Ullman
Subject Matter	Regular expression, Grammars, Finite automata, Context-free language, Turing machine, Recursive and Recursively enumerable language, Halting problem, Undecidablility, Complexities, Problem classes such as P, NP, and PSPACE.

Introduction to Mathematical Analysis with practice 1

M1407.000600 001, Mathematics, Undergraduate(Year 2)
Insuk Seo
A+
Introduction to Mathematical Analysis by Kim, Kim and Kye (Korean Textbook)
Completeness axiom, Limits of sequences, Point-set topology, Cauchy sequences,
Compact and connected sets, Limit and continuity, Uniformly continuous func-
tions, Riemann-Stieltjes integral, Fundamental theorem of calculus.

Linear Algebra 1

Course Information	300.203A 001, Mathematics, Undergraduate(Year 2)
Instructor	In-Sok Lee
Grade	A+
References	Linear Algebra and Groups by In-Sok Lee (Korean Textbook)
Subject Matter	Gauss elimination and Row-reduced echelon form, Linear maps, Determinants.
	Vector spaces, Basis change, Characteristic polynomial, Diagonalization and Tri-
	angularization, Inner product spaces, Bilinear forms, Orthogonal groups.

Number Theory

3341.211 001, Mathematics, Undergraduate(Year 2)
Byeong-Kweon Oh
A+
Elementary Number Theory by K. H. Rosen
Prime numbers, Congruence equations, Pseudo primes, Multiplicative functions,
Primitive root, Quadratic residue, Algebraic number, Diophantine equations.

Sets and Mathematical Logic

Course Information	881.313 001, Mathematics, Undergraduate(Year 2)
Instructor	Ki-Ahm Lee
Grade	B+
References	Introduction to Set Theory, Revised and Expanded by K. Hrbacek and T. Jech
Subject Matter	Elementary set theory, Construction of natural numbers, Integers, Rational num-
	bers and Real numbers, Axiom of choice, Cardinals and Ordinals.

Fall 2018

Differential and Integral Calculus 2

Course Information	033.006 001, Mathematics, Undergraduate(Year 1)
Instructor	Sang-hyun Kim
Grade	A+
References	Calculus 2+ by Hong-Jong Kim (Korean Textbook)
Subject Matter	Derivatives and integrals of several variable functions, Vector fields, Green theo-
	rem and Stokes theorem and their applications.

Statistical Computing and Lab

Course Information	033.006 001, Statistics, Undergraduate(Year 1)
Instructor	Joong-Ho (Johann) Won
Grade	A0
References	Instructor's Notes
Subject Matter	Computer programming and computer-assisted statistical data analysis, Various
	statistical analysis methods using programming languages such as C, Fortran, R.

Earth System Science / Earth System Science Lab

Course Information	034.040 001 / 034.041 001, Earthpoint set topology Sciences, Undergradu-
	ate(Year 1)
Instructor	Minsub Sim
Grade	A0 / A-
References	Foundations of Earth Science by Lutgens and Tarbuck
Subject Matter	Surface processes and internal dynamics of the Earth in Geosphere, Hydrosphere,
	Atmosphere and Biosphere including Crustal evolution, Environmental changes.

Writing in Science & Technology

Course Information	031.004 011, Faculty of Liberal Education, Undergraduate(Year 1)
Instructor	Sunkoo Yun
Grade	A+
References	Instructor's Notes
Subject Matter	This course offers the experience of whole process for writing an essay. All mem-
	bers of this class should search the topics concerned with natural science & tech-
	nology and set up the own hypothesis and assertion.

Summer 2018

Biology / Biology Lab

Course Information	034.029 001 / 034.033 004, Biological Science, Undergraduate(Year 1)
Instructor	Sue-Yeon Lee
Grade	A0 / A+
References	Campbell Biology by Reece Taylor Simon Dickey
Subject Matter	Component materials of organisms, Oxidation and reduction, Heredity of cell,
	Metabolism, Reproduction and Development, Hormones, Sensory organs, Inte-
	gration and Control of nervous system, Classification and Evolution of organisms.

Honor Calculus and Practice 1

Course Information	033.003 003, Mathematics, Undergraduate(Year 1)
Instructor	Ja A Jeong
Grade	A+
References	Calculus 1+ by Hong-Jong Kim (Korean Textbook)
Subject Matter	Properties of real numbers, Series, Taylor expansions, Vectors, Matrices, Deter-
	minants, and Curves.

Statistics / Statistics Lab

Course Information	033.019 003 / 033.020 003, Statistics, Undergraduate(Year 1)
Instructor	Hye-Young Jung
Grade	A+ / A+
References	Statistics by Woochul Kim (Korean Textbook)
Subject Matter	Binomial distribution, Normal distribution and Sample distributions, Interval es-
	timation, Hypothesis testing, Statistical inferences, Regression analysis, Categor-
	ical data analysis and Analysis of variance.

Physics 1 / Physics Lab 1

Course Information	034.001 002 / 034.009 005, Physics, Undergraduate(Year 1)
Instructor	Wonho Jhe
Grade	A0 / A+
References	Fundamentals of Physics by Halliday, Resnick, and Walker
Subject Matter	Gravitation, Fundamentals on the motion of particles, Energy, Wave motion, and
	Thermal physics.

Computer Application for Scientific Computation

Course Information	L0444.000100 001, Mathematics, Undergraduate(Year 1)
Instructor	Changwoo Lee
Grade	A-
References	A Primer scientific programming with python by Hans Petter Langtangen
Subject Matter	Data Type, Functions, Visualization, GUI, Numerical computing(Numpy, apply,
	cellfun), Notebook(Matlab, Rstudio, Jupyter), Neural network with tensorflow.