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Remark. In this section we will cover complexity classes:

o P

e NP, co-NP
o NP-complete
e NP-Hard



Definition (P)
A language L is in P if and only if there exists a deterministic Turing
Machine M, such that

e M runs for polynomial time on all inputs.

e For all x in L, M outputs y.

e For all x not in L, M outputs n.

Remark. Class P is what we usually call easy problems.



class NP

Definition (NP)
A language L is in P if and only if there exists a nondeterministic Turing
Machine M, such that

e M runs for polynomial time on all inputs.

e For all x in L, there's a path where M outputs y.

e For all x not in L, every path of M outputs n.

Remark. Class NP is what we usually call hard problems.

Remark. We had not define nondeterministic TM, but it is the same
extension as DFA to NFA.



Definition (NP - verifier definition)

A language L is in NP if and only if there exists a deterministic Turing
Machine V/, such that

e V runs for polynomial time on all inputs of ordered pair (/, W).
e W is the question we want to answer, "is W € L?"

e | is the instance that we want to be a proof of the answer.

If | proves W € L, then V outputs y.
e If | cannot prove W € L, then V outputs n.

Example. Let L be the question of whether given set has a subset of
sum zero. If an example of sum zero is given, then it is easy to check
that it has a subset of sum zero.



Theorem (Equivalence of definitions)
Both definitions of NP is identical.

e If a verifier is provided, generate all instances by appending an
alphabet, run each at the verifier.

e If a NTM is provided, there exists an instance that reaches the y
state in polynomial time. Use that instance.



Definition (co-NP)
A language L is in co-NP if L is NP.

Remark. We can also define similarly as of NP:

e NTM: there exists a path to n if x ¢ L.

e Verifier: there's a verifier that can prove x ¢ L with a
counter-example.

Open question. NP vs co-NP. Are they same?
Remark. P C NP N co-NP



The statement of millennial problem "P vs NP" is quite simple.

Is the complexity class P and NP are identical?

Remark. It is obvious that P € NP. The question is the converse.

Remark. We can interpret this as whether currently "hard” problems has
"easy” solution. However, there's currently no answer to it.

Remark. However, there's some proofs that certain types of proofs such
as "natural proof system” cannot prove or disprove this problem.



Definition (NP-hard)
A decision problem C is NP-hard if Every problem in NP is reducible to
C in polynomial time.

Remark. It was proven that Super Mario Bros. is NP-hard.

Super Mario Bros. Is Harder/Easier than We
Thought
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NP-complete

Definition (NP-complete)
A decision problem C is NP-complete if it is both NP and NP-hard.
Remark. NP-complete problem is important since

e developing polynomial time solver proves P = NP.

e proving non-existence ot polynomial time solver disproves P = NP.

Example.

e Boolean satisfiability problem (SAT)
e Knapsack problem

e Travelling salesman problem (decision version)

N-Queen problem

e etc..



SAT proble

Definition

A boolean expression consisted with And, Or, Not, (-) is called satisfiable
if there's an instance that makes the output true.
The SAT problem is to determine whether given expression is satisfiable.

SAT is NP-complete.

For a given NTM that solves a NP problem, assume it runs for

polynomial time p(n) for an input size n. Given an input, check the input
size n and construct a boolean function with variables of:

Variables Intended interpretation How many?m
Tijx True if tape cell ¢ contains symbol j at step k of the computation. O(p(n)?)
H;, True if M's read/write head is at tape cell i at step & of the computation. | O(p(n)?)
Quk True if M is in state g at step k of the computation. O(p(n))
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SAT problem

NP-complete, co ued.

and the function as a conjugation (And, multiplication operator) of:

) - ) How
Expression Conditions Interpretation
many?
Tape cell @ Initial contents of the tape. For i > n — 1 and i < 0, outside
Tijo initially contains | of the actual input I, the initial symbol is the special O(p(n))
symbol j default/blank symbol.
Qo Initial state of M. 1
Hyo Initial position of read/write head. 1
~Tiju vV ~Tigp AT At most one symbol per tape cell. O(p(n)?)
v Tk 2
A 2 At least one symbol per tape cell. O(p(n)*)
jcx
Tjge ATy e — Hig i#ET Tape remains unchanged unless written by head. O(p(n)?)
Qi V ~Qu k q#dq Only one state at a time. O(p(n))
~Hij V ~Hy it Only one head position at a time. O(p(n)*)
(Hip A Qui A Tigr) — Possible transitions at computation step k when head is at a
pa 7 k < p(n) - O(p(n)*)
V((@a)id o' apes Hivd, ki1 A Qq, ki1 ATy o, k41) position 4.
V Qs Must finish in an accepting state, not later than in step p(n). | 1

0<k<p(n) fcF

Computation of such polynomial results can be done in polynomial time.
Thus, SAT is NP-hard. SAT being NP is quite trivial. O
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SAT problem

Remark. This result is called Cook—Levin theorem.

Remark. Proof of NP-Completeness uses this result of SAT problem and
perform a reduction.
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Hilbert’s 10th Problem

Hilbert’s 10th Problem: The original statement is

" Given a Diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.”
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Hilbert’s 10th Problem

In our words,

Definition (Hilbert’s 10th Problem)

Is there an algorithm (Turing Machine) that decides whether a given
Diophantine equation with integer coefficients has a solution in integers?

However, it is proven to be impossible.

Theorem (Y.Matiyasevich, 1970)

Hilbert 10th Problem is negative:
It is impossible to build a Turing Machine that decides whether given

Diophantine equation with integer coefficients has a solution in integers.

Goal. The goal of this section is to see how Undecidablility is applied.



Diophantine set

Definition (Parameters, Variables)

Consider a Diophantine equation with integer coefficients :
D(al7327' cr Ay X1, X2, 0 >Xn) =0.

We call a1, a5, - -, a, as parameters and xi, Xo, - - - X,, as variables. Note
that there's no difference between parameters and variables.

Definition (Diophantine set)

A set A C Z" is called Diophantine if there exists a Diophantine equation
D such that

A={(a1,a2, - ,a,) : Ax1,x2, -+ ,xy) s.t. D(a,x) =0}.



Lagrange’s four-square theorem

Example. Set of natural numbers N is an example of Diophantine set.

2, .2, .2, 2
D(a, x1,x0,X3,%8) = X7 + %5 +x5 +x5 —a+1

Theorem (Lagrange’s four-square theorem)

For any natural number n, there exist four integers xi, x>, X3, x4 such that

2 2 2 2
n=xg+x5+x3+x;.
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Recursively Enumerable set

Definition (Recursively Enumerable set)

A set AC Z" is called Recursively Enumerable if there exists a Turing
Machine that prints each element in A eventually.

Remark. As one can see from the name, such set is equivalent to
Recursively Enumerable language. If there exists a TM M that defines A,
consider a new TM that

1. Consider k = 10.
2. Run M for k iterations for all inputs a < k. If it halts, a € A.
3. k < 10k and run from step 2 again.



Recursive set

Definition (Recursive set)
A set A C Z" is called Recursive if there exists a Turing Machine that
decides A, i.e. halts with state yes if a € A, halts with state no if a ¢ A.

V.

Example.

e Set of prime numbers.
e Set of even numbers.

e etc...



RE but not Recursive

Recursive set is always Recursively Enumerable set.

Remark. However, the converse does not hold.
Example. Consider a set of natural numbers defined as

{2P3*:p=(w),x = (M) ,w € L(M)}.

Remark. For the reminder, Halting problem was an instance of
Recursively Enumerable but not Recursive Language.



Hilbert’s 10th Problem

Proof of Hilbert's 10th Problem.

Suppose there exists a TM M that decides the existence of the solution.

Then, every Diophantine set is Recursive set. Assume Diophantine set A

and its corresponding Diophantine equation D(a, x) = 0 is given.

A= T

—Y

- 1

Then, the TM above decides the A making it Recursive set.

However, it is now proven that a set is Diophantine set if

and if only

Recursively Enumerable set. This yields a contradiction on Recursively

Enumerable set is not always Recursive.



Diophantine = RE?

Question. Now, all we have to answer is whether Recursively
Enumerable set is equivalent to Diophantine.

Ideas of the proof.

To do this, Davis, Putnam, Robinson, Matiyasevich built the Turing
Machine with the Diophantine equation. They built a Diophantine
equation

D(p, t, k) =0,

e p represents the current state and the location of the head.
e t represents the current tape.
e k represents the iteration number.

where the equation holds when current configuration (p, t) halts after k
iterations. This is done by proving transfer function is Diophatine. O



Diophantine = RE

Reduction. The problem can be reduced to non-negative solution.

e If Jalgorithm that decides Jsolutions in N, it also does in Z.

To solve D(z1,25,- -+ ,z,) =0 in z € Z", then solve
D(x1 — y1,% — Yo, yXn — ¥n) = 0 for x,y € N". O

e |f Jalgorithm that decides Jsolutions in Z, it also does in N.

To solve D(x1, X2, ,X,) =0 in x € Z", then solve
D(@+by+c2+d? - a2+ b, +c2+d?)=0forab,c,dcZ". O



Diophantine = RE

Idea 1. Diophantine equation can do And operator N.

Consider a Diophantine equation:

D? + D3 = 0.

Idea 2. Diophantine equation can do Or operator U.

Consider a Diophantine equation:

D1XD220.



Diophantine = RE

Example 1. A relation a < b is Diophantine:
D(a,b,x) :=b—a—x=0, xeN.
Example 2. A relation a|b is Diophantine:
D(a,b,x):=b—ax=0, xeN.
Example 3. A relation a= b mod c is Diophantine:

D(a,b,c,x)=b—a—cx=0, xeN.
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Diophantine = RE

Example 4. A set of composite numbers is Diophantine:
D(t,x,y) =t —(x+2)(y +2) =0, x,yeN
Example 5. A set of non-powers of 2 is Diophantine:
D(t,x,y):=t—(2x+3)y=0, x,y€eN.

Remark. The complement of the example 4,5 are also Recursively
Enumerable. However, there corresponding equations are very complex.
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Diophantine = RE

Corollary 1. There exists a Diophatine D(p, x), where

e D =0 only when p is a prime number.

e when p is prime, there exist a tuple of integers x that makes D = 0.

Corollary 2. There exists a Diophatine that the positive elements of the
range set is the set of prime numbers.

Pp(t,x) = (t+1)(1 — D(t,x)?) — 1

This polynomial returns a value t when D(t,x) = 0, and a negative value
when D(t,x) # 0.
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Diophantine = RE

Jones et al. (1976) found the explicit form:

(k + 2) is prime < solution exists for (k + 2)(1 — Za%) >0,

a=wz+h+j-—q=0
ay =(gk+29+k+1)(h+j)+h—2=0
a =16(k+1)*(k+2)(n+1)2+1—-f2=0
a3 =2n+p+q+z—e=0
a=ee+2)(a+1)+1-0"=0
as =@ -1 +1-2*=0
ag =161 (> —1)+1-u? =0
ap=n+Ll+v—y=0
ag=(a> -1 +1-m?=0
ag=ai+k+1—£—i=0
o = ((a+u*(u® —a))* —1)(n+4dy)* +1— (z +cu)* =0
ann =p+Lla—n—-1)+b2an+2a-n*-2n—-2)—m=0
ap=q+yla—p—1)+s2ap+2a—p* -2p—2)—2z=0
a3 =z+pl(a—p)+t(2ap—p* —1) —pm =0
31



Diophantine = RE

Some histories:

1. "Diophantine = RE" is conjectured by Davis (1949).

2. Solved with exponential Diophantine (ex. 2x3 ) by Davis,
Putnam, Robinson (1959). Thus, it makes proving

{(a,b,c) eN?: ¢ = a"}

is Diophantine proves H10.
3. Matiyasevich (1970) proves the set

{(a,b) eN?: b= F,,}

is Diophatine and concludes the H10.
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