
Seminar : Automata Theory

Lec 2 : Halting Problem

Jinhee Paeng

Aug 29, 2023

Seoul National University

1



Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

2



Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

3



Turing Machine

Goal. In this section we define the machinery called Turing Machine.

Definition (Turing Machine)

The Turing Machine, or TM, is written as M = (Q,Σ, Γ, δ, q0,H) where

each is :

1. Q : Finite set of States.

2. Σ : The set of Input Alphabets.

3. Γ : The set of Tape Alphabets. Includes blank alphabet #.

4. δ : (Q − H)× Γ → Q × Γ× {Left,Stay ,Right}.
5. q0 ∈ Q : The Initial state.

6. H ⊆ Q : The Halt states.

4



Turing Machine

How TM works :

1. Initially, the input string ω ∈ Σ∗ is written in Tape. The blank

alphabet # is written elsewhere in the tape.

2. The Turing machine starts with Initial state q0, with Head is

positioned at the rightmost blank alphabet placed before ω.

3. After Head reads the alphabet on the current position, State

changes, Head overwrites Tape and moves by δ function.

4. If current state is one of Halt states, the Turing machine halts.

5



Turing Machine

Initial starting configuration

Remark. We write current tape and head location using an underline at

the head position. The diagram can be written as :

(q0,#ω)

6



Turing Machine

⇒
Update by δ function. It describes δ(q, e) = (p, x , L).

Remark. We can write the update in the figure as :

(q,#abcdef ) ⊢ (p,#abcdxf )

7



Turing Machine

Goal. There are two Language classes related to the Turing machine :

The Recursively Enumerable Language and Recursive Language.

Definition (Recursively Enumerable Language)

For a given Turing machine M = (Q,Σ, Γ, δ, q0,H), we define L(M) as

L(M) =
{
ω ∈ Σ∗ : (q0,#ω) ⊢∗ (h, ∗), h ∈ H

}
.

We call languages that can be defined as L(M) for some TM M as

Recursively Enumerable Language.

In other words, L(M) is a set of strings that Halts the Turing machine M.

8



Turing Machine

Exmaples. Here’s example of Recursively Enumerable Language.

• {0n1n : n ≥ 1} :

Define TM M = ({q0, q1, · · · , q5}, {0, 1}, {0, 1, x , y ,#}, δ, q0, {q5}),
with the δ function as :

State 0 1 x y #

q0 (q1, x ,R) (q3, y ,R) (q0,#,R)

q1 (q1, 0,R) (q2, y , L) (q1, y ,R)

q2 (q2, 0, L) (q0, x ,R) (q2, y , L)

q3 (q3, y ,R) (q5,#,S)

q4

Remark. It replaces leftmost 0 by x , and 1 as y , by alternating one at a

time. q4 is designed to be a dead state.

9



Turing Machine

Definition (Recursive Language)

For a Language L, we say TM M = (Q,Σ, Γ, δ, q0, {y , n}) decides L if

• If ω ∈ L then, (q0,#ω) ⊢∗ (y , ∗).
• If ω /∈ L then, (q0,#ω) ⊢∗ (n, ∗).

We call L as Recursive Language if there exist TM M that decides L.

Remark. Such TM always halts.

Remark. We sometimes refer Recursive Language as Decidable.

Theorem

If a language L is Recursive, then it is also Recursively Enumerable.

Proof.

Make n state as a dead state, looping itself infinitely.

10



Turing Machine

Definition (Computable function)

We say a function f : Σ∗ → Σ∗ is Computable if there exists a TM

M = (Q,Σ, Γ, δ, q0, {h}) that satisfies :

(q0,#ω) ⊢∗ (h,#f (ω)).

We say M computes f .

Remark. In this sense, we say TM as Algorithm.

11



Turing Machine

Example. Addition is computable. Perform n +m with

f : 1n01m 7→ 1n+m.

q0 q1 q2 q3 h
#/#,R

0/1,R
1/1,R

#/#, L 1/#, L

1/1,L

#/#,S

Remark. In this sense, we say TM as Algorithm.

12



Universal Turing Machine

Question. What is computer?

Observation. We can easily check that the set of Turing machines are

countable. We can define a method of encoding ⟨·⟩ :

• TM M is encoded as ⟨M⟩ ∈ {0, 1}∗.
• String ω is encoded as ⟨ω⟩ ∈ {0, 1}∗.
• Concatenation of ⟨M⟩ and ⟨ω⟩ is denoted as ⟨M, ω⟩.
• String ⟨M, ω⟩ is unique among any pair of TM and string (M, ω).

Remark. Such encoding can be defined explicitly, but we omit the detail

in this seminar. The idea is to write a n or n-th element as 0n, and use 1

as a separating character.

13



Universal Turing Machine

Remark. With the encoding, we can have TM M as an input.

Definition (Universal Turing Machine)

A Turing machine Mu is called Universal Turing Machine if

• it takes ⟨M, ω⟩ as an input. It halts if an input is not in this form.

• it halts if M halts with input ω.

• it gives an output same to the output of M with ω.

Remark. We can build Mu using 3-tape TM.

Remark. Universal Turing Machine is what we call a general-purpose

computer.

14



Universal Turing Machine

Remark. We can build equivalent Turing machine of given 3-tape TM.

⇒

Finding equivalent TM.

We use Γ ∪ (Γ ∪ Γ)3 as a new set of Tape alphabet. Γ = {a : a ∈ Γ}
indicates that i-th head is positioned here.

15



Universal Turing Machine

Definition (Turing-Completeness)

We call a computer P as Turing-Complete if it is equivalent to Universal

Turing Machine. Or equivalently, a computer P that can simulate the

Universal Turing Machine is called Turing-Complete.

Examples. Here are some examples of Turing-Complete systems.

• General-Purpose languages : C, C++, Python, R, Java, ...

• Some of other languages : Tex, Prolog, ...

• Conway’s Game of Life : Simulating whole computer

• Microsoft Excel

• Some games :

Cities: Skylines, Minecraft, Baba is you, Magic: The Gathering

• DNA and Enzyme system

Remark. Markdown language is not Turing-Complete.

16

https://www.youtube.com/watch?v=WfuhbI8HE7s


Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

17



Halting Problem

Goal. In this section we cover the Halting Problem.

Theorem (Halting Problem)

It is impossible to build a Turing machine such that

• takes ⟨M, ω⟩ as an input.

• decides whether ω ∈ L(M), i.e. ω halts M.

(It halts in state y if ω ∈ L(M), while halting in n if ω /∈ L(M).)

Remark. The proof takes a similar idea of Set of all sets.

18



Halting Problem

Before moving on to the detailed proof, let’s first take observation on the

Recursively Enumerable Language and Recursive Language.

Diagram of M1 and M2

TM M1 that defines Recursively Enumerable Language L1 = L(M1) and

TM M2 that decides Recursive Language L2 are described as above.

19



Halting Problem

Theorem

Complement of Recursive Language L, LC , is also a Recursive Language.

Proof.

Change y , n states, and it will decide LC .

⇒

20



Halting Problem

Theorem

When a language L and its complement LC are both Recursively

Enumerable Language, than L is Recursive Language.

Proof.

Suppose L = L(M1) and LC = L(M2). Then build :

⇒

It defines a new TM that decides L, making it Recursive Language.

21



Halting Problem

Observation. Thus, we can say that a language L and it complement LC

fall into following three cases :

• L and LC are both Recursive Language.

• Both L and LC are not Recursively Enumerable Language.

• One of L or LC is not Recursively Enumerable Language,

while other is Recursively Enumerable Language but not Recursive.

Remark. We later use this observation to prove that a language

corresponding to the Halting problem is not Recursive.

22



Halting Problem

Definition (Lu)

We can describe Halting problem as a language :

Lu = {⟨M, ω⟩ : ω ∈ L(M)}.

The Halting problem is equivalent to Lu being not Recursive.

Theorem

Lu is Recursively Enumerable Language.

Proof.

The Universal Turing Machine Mu defines Lu. i.e. Lu = L(Mu).

23



Halting Problem

Definition (Ld)

A language Ld is defined as :

Ld = {⟨M⟩ : ⟨M⟩ ∈ L(M)}.

Ld is a set of encoded TM, that halts by encoded string of itself.

Theorem

Ld is Recursively Enumerable Language.

Proof.

TM Md of the following diagram defines Ld . i.e. Ld = L(Md).

24



Halting Problem

Theorem

LCd is not a Recursively Enumerable Language.

Proof.

Suppose LCd is Recursively Enumerable, thus LCd = L(M) for some M.

• If ⟨M⟩ ∈ LCd , then ⟨M⟩ ∈ Ld . Thus contradiction.

• If ⟨M⟩ /∈ LCd , then ⟨M⟩ /∈ Ld . Thus contradiction.

Remark. This concludes that Ld is Recursively Enumerable but not

Recursive.

Remark. LCd is an analogous concept of {A : A /∈ A}.

25



Halting Problem

Theorem

Lu is not a Recursive Language.

Proof.

Proof by contradiction : Suppose Lu is Recursive, and TM M0 decides Lu.

Then, it is possible to build TM M1 that decides Ld .

However, it contradicts with Ld not being a Recursive Language.

Remark. Thus, we can conclude the Halting Problem. It is impossible to

generally answer whether the given Turing machine and input string halts.

26



Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

27



Undecidable Problems

Goal. In this section we cover some Undecidable Problem.

Definition (Undecidable Problem)

We call a language L Undecidable if there’s no TM that decides L. For a

Undecidable L, a question

For a given string ω, is ω ∈ L?

is called Undecidable Problem.

Remark. The Halting problem is one of the Undecidable Problem.

28



Undecidable Problems

Recall. A function f is called Computable if there exists a TM M that

always halts for any input ω and gives an output of F (ω).

Definition (Problem Reduction)

A Reduction of language L1 to L2 is a computable function f such that

ω ∈ L1 if and only if f (ω) ∈ L2.

Remark. Reduction is useful when proving a language is Undecidable.

When L1 is Undecidable, so is L2.

29



Undecidable Problems

Example. ”Does M halts with input ϵ?” is Undecidable Problem.

Lϵ = {⟨M⟩ : ϵ ∈ L(M)}

Equivalently, Lϵ is not Recursive Language.

Proof.

Make a Computable function of ⟨M, ω⟩ 7→ ⟨Mω⟩, where Mω is a TM that

when an input ϵ is given, writes ω on the Tape and runs TM M.

If Lϵ is decided by some TM Mϵ, then M0 of the diagram decides Lu,

which contradicts to the Halting Problem.

30



Undecidable Problems

Theorem

When C is a nonempty, proper subset of the collection of Recursively

Enumerable Language, then the question ”L(M) ∈ C?” is Undecidable.

LC = {⟨M⟩ : L(M) ∈ C}

Equivalently, LC is not Recursive Language.

Proof.

Without loss of generality, assume ∅ /∈ C . (If not, consider CC ).

Then we may choose a language L ∈ C that L ̸= ∅. Say L = L(ML).

For any TM M, define a new TM M ′ depending on M and ML :

31



Undecidable Problems

Proof continued.

Note that ⟨M⟩ 7→ ⟨M ′⟩ is Computable. Also,

• If ⟨M⟩ ∈ Lϵ, then L(M ′) = L(ML) = L. Thus L(M ′) ∈ C .

• If ⟨M⟩ /∈ Lϵ, then L(M ′) = ∅. Thus L(M ′) /∈ C .

To prove by contraction, assume TM MC decides LC . Build a TM :

It decides whether M halts with input ϵ. Thus, it contradicts with the

previous example of Lϵ being not Recursive Language.

32



Undecidable Problems

Remark. It is possible to decide whether a given language can be defined

by some Turing machine or not. This is the reason why we excluded the

case where C being empty or every Recursively Enumerable Language.

Remark. What Rice Theorem implies is that it is impossible to decide

whether a given language can be defined by a Turing machine when extra

condition is given. For example, it is impossible to computationally check

whether two given TMs define a same language.

Example. Examples of Undecidable Problems as corollary of Rice Thm.

• ”Given TM M, does M not halt for any input?”

• ”Given TM M, is L(M) a Regular Expression?”

33



Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

34



Busy Beaver

Goal. It is section we cover a set of functions related to TM. We will

also go through their characteristics including noncomputability.

35



Busy Beaver

Definition (Busy Beaver)

A function BB : N → N, named Busy Beaver, is a maximum number of 1

we can write on the tape using TM with n number of states that halts

with input ϵ. To be explicit, it is defined as :

BB(n) = max
ϵ∈L(M)

M=({q1,··· ,qn},{0,1},Γ,δ,q1,H)

score(M),

where score(M) is defined as a number of 1’s in the Tape when M halts.

Remark. Busy Beaver function is a well-defined function.

Remark. Some call this function as Radó’s sigma function, Σ(n).

Example. (n = 4), (BaBa is you ver.)

36

https://youtu.be/2PjU6DJyBpw
https://www.youtube.com/watch?v=hsXpLx4soQY


Busy Beaver

Definition (Frantic Frog)

A function FF : N → N, named Frantic Frog, is a maximum number of

head shift in TM with n number of states that halts with input ϵ. To be

explicit, it is defined as :

BB(n) = max
ϵ∈L(M)

M=({q1,··· ,qn},{0,1},Γ,δ,q1,H)

score(M),

where score(M) is defined as a number of head shift until M halts.

Remark. Frantic Frog function is also a well-defined function.

Remark. Some call this function as Maximum shifts function, S(n).

37



Busy Beaver

Application. Knowing FF (43) solves Goldbach’s conjecture.

Application. Knowing FF (744) solves Riemann Hypothesis.

Explanation. Build a TM that searches the counterexamples. If it

halts, the statement is false. If it does not halt, the statement if true. It

is possible to build such TM with 43 states for Goldbach’s conjecture,

and 744 states for Riemann Hypothesis.

Explicit form. github link

38

https://github.com/sorear/metamath-turing-machines/tree/master


Busy Beaver

Observation. BB(n) and FF (n) are both increasing functions.

Observation. BB(n) ≤ FF (n) since writing one 1 takes one shift.

Theorem

BB(n) and FF (n) is asymptotically faster than any other computable

functions.

lim
n→∞

BB(n)

f (n)
= ∞, lim

n→∞

FF (n)

f (n)
= ∞

for any computable function f .

Remark. This result directly implies that both FF (n) and BB(n) are

noncomputable.

39



Busy Beaver

Proof.

Suppose there exists a computable function f such that FF (n) ≤ f (n).

Then, we can build a TM that decides Lϵ as :

1. When an input ⟨M⟩ is given, get the number of states n.

2. Compute f (n).

3. Run M with a blank input, while counting the Head shift.

4. If Head shift count exceeds f (n), conclude ⟨M⟩ /∈ Lϵ.

If it halts, conclude ⟨M⟩ ∈ Lϵ.

40



Busy Beaver

Known Results. Very few values are currently known.

• BB(1) = 1 and FF (1) = 1

• BB(2) = 4 and FF (2) = 6

• BB(3) = 6 and FF (3) = 21

• BB(4) = 13 and FF (4) = 107

Remark. The TM that obtains maxima in FF and BB are not identical.

Question. Why is it so hard to compute?

Answer. There’s no general method to compute BB(n) or FF (n). Only

way is to check every possible TMs, and we have to prove whether each

TM halts. Due to the Halting Problem, it is impossible to build an

algorithm to tell that a given algorithm halts or not. Also, number of TM

grows exponentially, ex) 6975757441 when n = 4.

41



Busy Beaver

Theorem

It is impossible to calculate the value of FF (748) in ZFC. Even providing

an upper bound is impossible.

Proof.

1. It is possible to build a TM with 748 states that halts if and only if

ZFC is inconsistent.

2. Knowing FF (748) can prove or disprove inconsistency of ZFC.

3. However, The Incompleteness Theorem by Kurt Gödel states that it

is impossible to prove system’s consistency within the system.

42



Busy Beaver

Remark. Such statements foreshadows that getting an upper bound for

FF (744) is much harder than solving Riemann Hypothesis.

Remark. Note that even if you manage to get an upper bound of

FF (744), keep in mind that it actually take eons to compute until the

iteration reaches FF (744).

Remark. Proving that the TM (that proves Goldbach’s conjecture or

Riemann Hypothesis) does not halt is much easier problem. It is actually

a subproblem that need to be solved to get FF (43) or FF (744).

43



Next week preview

Preview : Next week, I hope to cover topics :

• Algorithm classes including P,NP,NP − Complete.

• Proof of Hilbert’s 10th problem :

Given a Diophantine equation with any number of unknown

quantities and with rational integral numerical coefficients: To devise

a process according to which it can be determined in a finite number

of operations whether the equation is solvable in rational integers.

44


	Turing Machine
	Halting Problem
	Undecidable Problems
	Busy Beaver

