Seminar : Automata Theory

Lec 2 : Halting Problem

Jinhee Paeng
Aug 29, 2023
Seoul National University

Table of Contents

Turing Machine
Halting Problem

Undecidable Problems

Busy Beaver

Table of Contents

Turing Machine
Halting Problem
\section*{Undecidable Problems}
\section*{Busy Beaver}

Turing Machine

Goal. In this section we define the machinery called Turing Machine.

Definition (Turing Machine)

The Turing Machine, or $T M$, is written as $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, H\right)$ where each is :

1. Q : Finite set of States.
2. Σ : The set of Input Alphabets.
3. Γ : The set of Tape Alphabets. Includes blank alphabet \#.
4. $\delta:(Q-H) \times \Gamma \rightarrow Q \times \Gamma \times\{$ Left, Stay, Right $\}$.
5. $q_{0} \in Q$: The Initial state.
6. $H \subseteq Q$: The Halt states.

Turing Machine

How TM works :

1. Initially, the input string $\omega \in \Sigma^{*}$ is written in Tape. The blank alphabet \# is written elsewhere in the tape.
2. The Turing machine starts with Initial state q_{0}, with Head is positioned at the rightmost blank alphabet placed before ω.
3. After Head reads the alphabet on the current position, State changes, Head overwrites Tape and moves by δ function.
4. If current state is one of Halt states, the Turing machine halts.

Turing Machine

Initial starting configuration

Remark. We write current tape and head location using an underline at the head position. The diagram can be written as :

$$
\left(q_{0}, \# \omega\right)
$$

Turing Machine

Update by δ function. It describes $\delta(q, e)=(p, x, L)$.

Remark. We can write the update in the figure as:

$$
(q, \# a b c d \underline{e} f) \vdash(p, \# a b c \underline{d} x f)
$$

Turing Machine

Goal. There are two Language classes related to the Turing machine : The Recursively Enumerable Language and Recursive Language.

Definition (Recursively Enumerable Language)

For a given Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, H\right)$, we define $L(M)$ as

$$
L(M)=\left\{\omega \in \Sigma^{*}:\left(q_{0}, \# \omega\right) \vdash^{*}(h, *), h \in H\right\} .
$$

We call languages that can be defined as $L(M)$ for some TM M as Recursively Enumerable Language.

In other words, $L(M)$ is a set of strings that Halts the Turing machine M.

Turing Machine

Exmaples. Here's example of Recursively Enumerable Language.

- $\left\{0^{n} 1^{n}: n \geq 1\right\}$:

Define TM $M=\left(\left\{q_{0}, q_{1}, \cdots, q_{5}\right\},\{0,1\},\{0,1, x, y, \#\}, \delta, q_{0},\left\{q_{5}\right\}\right)$, with the δ function as:

State	0	1	x	y	$\#$
q_{0}	$\left(q_{1}, x, R\right)$			$\left(q_{3}, y, R\right)$	$\left(q_{0}, \#, R\right)$
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, y, L\right)$		$\left(q_{1}, y, R\right)$	
q_{2}	$\left(q_{2}, 0, L\right)$		$\left(q_{0}, x, R\right)$	$\left(q_{2}, y, L\right)$	
q_{3}				$\left(q_{3}, y, R\right)$	$\left(q_{5}, \#, S\right)$

Remark. It replaces leftmost 0 by x, and 1 as y, by alternating one at a time. q_{4} is designed to be a dead state.

Turing Machine

Definition (Recursive Language)

For a Language L, we say $\mathrm{TM} M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\{y, n\}\right)$ decides L if

- If $\omega \in L$ then, $\left(q_{0}, \# \omega\right) \vdash^{*}(y, *)$.
- If $\omega \notin L$ then, $\left(q_{0}, \# \omega\right) \vdash^{*}(n, *)$.

We call L as Recursive Language if there exist TM M that decides L.

Remark. Such TM always halts.
Remark. We sometimes refer Recursive Language as Decidable.

Theorem

If a language L is Recursive, then it is also Recursively Enumerable.

Proof.

Make n state as a dead state, looping itself infinitely.

Turing Machine

Definition (Computable function)

We say a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Computable if there exists a TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0},\{h\}\right)$ that satisfies :

$$
\left(q_{0}, \# \omega\right) \vdash^{*}(h, \# f(\omega)) .
$$

We say M computes f.

Remark. In this sense, we say TM as Algorithm.

Turing Machine

Example. Addition is computable. Perform $n+m$ with

$$
f: 1^{n} 01^{m} \mapsto 1^{n+m}
$$

Remark. In this sense, we say TM as Algorithm.

Universal Turing Machine

Question. What is computer?
Observation. We can easily check that the set of Turing machines are countable. We can define a method of encoding $\langle\cdot\rangle$:

- TM M is encoded as $\langle M\rangle \in\{0,1\}^{*}$.
- String ω is encoded as $\langle\omega\rangle \in\{0,1\}^{*}$.
- Concatenation of $\langle M\rangle$ and $\langle\omega\rangle$ is denoted as $\langle M, \omega\rangle$.
- String $\langle M, \omega\rangle$ is unique among any pair of TM and string (M, ω).

Remark. Such encoding can be defined explicitly, but we omit the detail in this seminar. The idea is to write a n or n-th element as 0^{n}, and use 1 as a separating character.

Universal Turing Machine

Remark. With the encoding, we can have TM M as an input.

Definition (Universal Turing Machine)

A Turing machine M_{u} is called Universal Turing Machine if

- it takes $\langle M, \omega\rangle$ as an input. It halts if an input is not in this form.
- it halts if M halts with input ω.
- it gives an output same to the output of M with ω.

Remark. We can build M_{u} using 3-tape TM.
Remark. Universal Turing Machine is what we call a general-purpose computer.

Universal Turing Machine

Remark. We can build equivalent Turing machine of given 3-tape TM.

1									
..	$\#$	$\#$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\#$	$\#$	\cdots

Finding equivalent TM.

We use $\Gamma \cup(\bar{\Gamma} \cup \Gamma)^{3}$ as a new set of Tape alphabet. $\bar{\Gamma}=\{\bar{a}: a \in \Gamma\}$ indicates that i-th head is positioned here.

Universal Turing Machine

Definition (Turing-Completeness)

We call a computer P as Turing-Complete if it is equivalent to Universal Turing Machine. Or equivalently, a computer P that can simulate the Universal Turing Machine is called Turing-Complete.

Examples. Here are some examples of Turing-Complete systems.

- General-Purpose languages: C, C++, Python, R, Java, ...
- Some of other languages: Tex, Prolog, ...
- Conway's Game of Life : Simulating whole computer
- Microsoft Excel
- Some games :

Cities: Skylines, Minecraft, Baba is you, Magic: The Gathering

- DNA and Enzyme system

Remark. Markdown language is not Turing-Complete.

Table of Contents

Turing Machine

Halting Problem

Undecidable Problems

Busy Beaver

Halting Problem

Goal. In this section we cover the Halting Problem.

Theorem (Halting Problem)

It is impossible to build a Turing machine such that

- takes $\langle M, \omega\rangle$ as an input.
- decides whether $\omega \in L(M)$, i.e. ω halts M. (It halts in state y if $\omega \in L(M)$, while halting in n if $\omega \notin L(M)$.)

Remark. The proof takes a similar idea of Set of all sets.

Halting Problem

Before moving on to the detailed proof, let's first take observation on the Recursively Enumerable Language and Recursive Language.

Diagram of M_{1} and M_{2}

TM M_{1} that defines Recursively Enumerable Language $L_{1}=L\left(M_{1}\right)$ and TM M_{2} that decides Recursive Language L_{2} are described as above.

Halting Problem

Theorem

Complement of Recursive Language L, L^{C}, is also a Recursive Language.

Proof.

Change y, n states, and it will decide L^{C}.

Halting Problem

Theorem

When a language L and its complement L^{C} are both Recursively Enumerable Language, than L is Recursive Language.

Proof.

Suppose $L=L\left(M_{1}\right)$ and $L^{C}=L\left(M_{2}\right)$. Then build :

It defines a new TM that decides L, making it Recursive Language.

Halting Problem

Observation. Thus, we can say that a language L and it complement L^{C} fall into following three cases :

- L and L^{C} are both Recursive Language.
- Both L and L^{C} are not Recursively Enumerable Language.
- One of L or L^{C} is not Recursively Enumerable Language, while other is Recursively Enumerable Language but not Recursive.

Remark. We later use this observation to prove that a language corresponding to the Halting problem is not Recursive.

Halting Problem

Definition $\left(L_{u}\right)$

We can describe Halting problem as a language :

$$
L_{u}=\{\langle M, \omega\rangle: \omega \in L(M)\} .
$$

The Halting problem is equivalent to L_{u} being not Recursive.

Theorem

L_{u} is Recursively Enumerable Language.

Proof.

The Universal Turing Machine M_{u} defines L_{u}. i.e. $L_{u}=L\left(M_{u}\right)$.

Halting Problem

Definition $\left(L_{d}\right)$

A language L_{d} is defined as :

$$
L_{d}=\{\langle M\rangle:\langle M\rangle \in L(M)\} .
$$

L_{d} is a set of encoded TM, that halts by encoded string of itself.

Theorem

L_{d} is Recursively Enumerable Language.

Proof.

TM M_{d} of the following diagram defines L_{d}. i.e. $L_{d}=L\left(M_{d}\right)$.

Halting Problem

Theorem

L_{d}^{C} is not a Recursively Enumerable Language.

Proof.

Suppose L_{d}^{C} is Recursively Enumerable, thus $L_{d}^{C}=L(M)$ for some M.

- If $\langle M\rangle \in L_{d}^{C}$, then $\langle M\rangle \in L_{d}$. Thus contradiction.
- If $\langle M\rangle \notin L_{d}^{C}$, then $\langle M\rangle \notin L_{d}$. Thus contradiction.

Remark. This concludes that L_{d} is Recursively Enumerable but not Recursive.

Remark. L_{d}^{C} is an analogous concept of $\{A: A \notin A\}$.

Halting Problem

Theorem

L_{u} is not a Recursive Language.

Proof.

Proof by contradiction: Suppose L_{u} is Recursive, and TM M_{0} decides L_{u}. Then, it is possible to build TM M_{1} that decides L_{d}.

However, it contradicts with L_{d} not being a Recursive Language.

Remark. Thus, we can conclude the Halting Problem. It is impossible to generally answer whether the given Turing machine and input string halts.

Table of Contents

> Turing Machine

> Halting Problem

Undecidable Problems

Busy Beaver

Undecidable Problems

Goal. In this section we cover some Undecidable Problem.

Definition (Undecidable Problem)

We call a language L Undecidable if there's no TM that decides L. For a Undecidable L, a question

$$
\text { For a given string } \omega \text {, is } \omega \in L \text { ? }
$$

is called Undecidable Problem.

Remark. The Halting problem is one of the Undecidable Problem.

Undecidable Problems

Recall. A function f is called Computable if there exists a TM M that always halts for any input ω and gives an output of $F(\omega)$.

Definition (Problem Reduction)

A Reduction of language L_{1} to L_{2} is a computable function f such that

$$
\omega \in L_{1} \text { if and only if } f(\omega) \in L_{2} .
$$

Remark. Reduction is useful when proving a language is Undecidable. When L_{1} is Undecidable, so is L_{2}.

Undecidable Problems

Example. "Does M halts with input ϵ ?" is Undecidable Problem.

$$
L_{\epsilon}=\{\langle M\rangle: \epsilon \in L(M)\}
$$

Equivalently, L_{ϵ} is not Recursive Language.

Proof.

Make a Computable function of $\langle M, \omega\rangle \mapsto\left\langle M_{\omega}\right\rangle$, where M_{ω} is a TM that when an input ϵ is given, writes ω on the Tape and runs TM M.

If L_{ϵ} is decided by some TM M_{ϵ}, then M_{0} of the diagram decides L_{u}, which contradicts to the Halting Problem.

Undecidable Problems

Theorem

When C is a nonempty, proper subset of the collection of Recursively Enumerable Language, then the question " $L(M) \in C$?" is Undecidable.

$$
L_{C}=\{\langle M\rangle: L(M) \in C\}
$$

Equivalently, L_{C} is not Recursive Language.

Proof.

Without loss of generality, assume $\emptyset \notin C$. (If not, consider C^{C}).
Then we may choose a language $L \in C$ that $L \neq \emptyset$. Say $L=L\left(M_{L}\right)$.
For any TM M, define a new TM M^{\prime} depending on M and M_{L} :

Undecidable Problems

Proof continued.

Note that $\langle M\rangle \mapsto\left\langle M^{\prime}\right\rangle$ is Computable. Also,

- If $\langle M\rangle \in L_{\epsilon}$, then $L\left(M^{\prime}\right)=L\left(M_{L}\right)=L$. Thus $L\left(M^{\prime}\right) \in C$.
- If $\langle M\rangle \notin L_{\epsilon}$, then $L\left(M^{\prime}\right)=\emptyset$. Thus $L\left(M^{\prime}\right) \notin C$.

To prove by contraction, assume TM M_{C} decides L_{C}. Build a TM :

It decides whether M halts with input ϵ. Thus, it contradicts with the previous example of L_{ϵ} being not Recursive Language.

Undecidable Problems

Remark. It is possible to decide whether a given language can be defined by some Turing machine or not. This is the reason why we excluded the case where C being empty or every Recursively Enumerable Language.

Remark. What Rice Theorem implies is that it is impossible to decide whether a given language can be defined by a Turing machine when extra condition is given. For example, it is impossible to computationally check whether two given TMs define a same language.

Example. Examples of Undecidable Problems as corollary of Rice Thm.

- "Given TM M, does M not halt for any input?"
- "Given TM M, is $L(M)$ a Regular Expression?"

Table of Contents

Turing Machine
\section*{Halting Problem}
\section*{Undecidable Problems}

Busy Beaver

Busy Beaver

Goal. It is section we cover a set of functions related to TM. We will also go through their characteristics including noncomputability.

Busy Beaver

Definition (Busy Beaver)

A function $B B: \mathbb{N} \rightarrow \mathbb{N}$, named Busy Beaver, is a maximum number of 1 we can write on the tape using TM with n number of states that halts with input ϵ. To be explicit, it is defined as:

$$
B B(n)=\max _{M=\left(\left\{q_{1}, \cdots, q_{n}\right\},\{0,1\}, \Gamma, \delta, q_{1}, H\right)} \operatorname{score}(M),
$$

where $\operatorname{score}(M)$ is defined as a number of 1 's in the Tape when M halts.

Remark. Busy Beaver function is a well-defined function.
Remark. Some call this function as Radó's sigma function, $\Sigma(n)$.
Example. $(n=4),(\mathrm{BaBa}$ is you ver.)

Busy Beaver

Definition (Frantic Frog)

A function $F F: \mathbb{N} \rightarrow \mathbb{N}$, named Frantic Frog, is a maximum number of head shift in TM with n number of states that halts with input ϵ. To be explicit, it is defined as :

$$
B B(n)=\max _{\substack{\epsilon \in L(M) \\ M=\left(\left\{q_{1}, \cdots, q_{n}\right\},\{0,1\}, \Gamma, \delta, q_{1}, H\right)}} \operatorname{score}(M),
$$

where $\operatorname{score}(M)$ is defined as a number of head shift until M halts.

Remark. Frantic Frog function is also a well-defined function.
Remark. Some call this function as Maximum shifts function, $S(n)$.

Busy Beaver

Application. Knowing $F F(43)$ solves Goldbach's conjecture.
Application. Knowing FF(744) solves Riemann Hypothesis.
Explanation. Build a TM that searches the counterexamples. If it halts, the statement is false. If it does not halt, the statement if true. It is possible to build such TM with 43 states for Goldbach's conjecture, and 744 states for Riemann Hypothesis.

Explicit form. github link

Busy Beaver

Observation. $B B(n)$ and $F F(n)$ are both increasing functions.
Observation. $B B(n) \leq F F(n)$ since writing one 1 takes one shift.

Theorem

$B B(n)$ and $F F(n)$ is asymptotically faster than any other computable functions.

$$
\lim _{n \rightarrow \infty} \frac{B B(n)}{f(n)}=\infty, \lim _{n \rightarrow \infty} \frac{F F(n)}{f(n)}=\infty
$$

for any computable function f.

Remark. This result directly implies that both $F F(n)$ and $B B(n)$ are noncomputable.

Busy Beaver

Proof.

Suppose there exists a computable function f such that $F F(n) \leq f(n)$. Then, we can build a TM that decides L_{ϵ} as :

1. When an input $\langle M\rangle$ is given, get the number of states n.
2. Compute $f(n)$.
3. Run M with a blank input, while counting the Head shift.
4. If Head shift count exceeds $f(n)$, conclude $\langle M\rangle \notin L_{\epsilon}$. If it halts, conclude $\langle M\rangle \in L_{\epsilon}$.

Busy Beaver

Known Results. Very few values are currently known.

- $B B(1)=1$ and $F F(1)=1$
- $B B(2)=4$ and $F F(2)=6$
- $B B(3)=6$ and $F F(3)=21$
- $B B(4)=13$ and $F F(4)=107$

Remark. The TM that obtains maxima in FF and $B B$ are not identical.
Question. Why is it so hard to compute?
Answer. There's no general method to compute $B B(n)$ or $F F(n)$. Only way is to check every possible TMs, and we have to prove whether each TM halts. Due to the Halting Problem, it is impossible to build an algorithm to tell that a given algorithm halts or not. Also, number of TM grows exponentially, ex) 6975757441 when $n=4$.

Busy Beaver

Theorem

It is impossible to calculate the value of $F F(748)$ in ZFC. Even providing an upper bound is impossible.

Proof.

1. It is possible to build a TM with 748 states that halts if and only if ZFC is inconsistent.
2. Knowing $F F(748)$ can prove or disprove inconsistency of ZFC.
3. However, The Incompleteness Theorem by Kurt Gödel states that it is impossible to prove system's consistency within the system.

Busy Beaver

Remark. Such statements foreshadows that getting an upper bound for FF(744) is much harder than solving Riemann Hypothesis.

Remark. Note that even if you manage to get an upper bound of FF(744), keep in mind that it actually take eons to compute until the iteration reaches $F F(744)$.

Remark. Proving that the TM (that proves Goldbach's conjecture or Riemann Hypothesis) does not halt is much easier problem. It is actually a subproblem that need to be solved to get $F F(43)$ or $F F(744)$.

Next week preview

Preview : Next week, I hope to cover topics :

- Algorithm classes including $P, N P, N P$ - Complete.
- Proof of Hilbert's 10th problem :

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

