
Seminar : Automata Theory

Lec 1 : Equivalency of Finite Automata and Regular expression

Jinhee Paeng

Aug 22, 2023

Seoul National University

1

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

2

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

3

Language

Definition (Alphabet)

Alphabet is a finite set of characters. We denote Σ as a alphabet set.

Example. Following sets are examples of the alphabet.

• {0, 1}
• {a, b, c , · · · , z}

Definition (String)

String generated by Σ is a finite length word that uses characters in Σ.

We denote the length of the string w as |w |. We say a string is an empty

string if it is of length zero. We denote the empty string as ϵ.

4

Language

Definition (Concatenation)

When the two strings x , y are given, we denote a concatenation of as xy .

When the two sets of strings X ,Y are given, we define a concatenation

of sets X ,Y as

XY = {xy : x ∈ X , y ∈ Y } .

Definition (Kleene product)

For a set of strings S , we denote a set S∗ as a Kleene product of the set

S :

S∗ =
∞⋃
k=0

Sk , Sk+1 = SkS , S0 = {ϵ}

Remark. Note that the set of all strings generated by the set Σ is Σ∗.

For example, when Σ = {0, 1}, then

Σ∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, · · · }.
5

Language

Definition (Language)

• We say a set L is a Language if L ⊂ Σ∗.

• We call a set of Languages as Language Class.

Remark. Since Language is a set of strings, we can define concatenation

and Kleene product identically on Languages.

Remark. Definition of Language coincides with the general notion of

languages such as English, Korean, C, Python.

6

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

7

Regular Expression RE

Goal. In this section we define the first useful Language class, called RE.

Definition (Regular Expression)

We denote a language class Regular Expression as RE . Language class

RE is defined inductively using following rules.

1. ∅ ∈ RE : An empty set ∅ is regular expression.

2. ϵ ∈ RE : A singleton set ϵ = {ϵ} is regular expression.

3. a ∈ Σ ⇒ a ∈ RE : A singleton set a = {a} is regular expression for

every alphabet a ∈ Σ.

4. r , s ∈ RE ⇒ (r + s), (rs), (r∗) ∈ RE : When r , s are regular

expression and equivalent to the set of strings R,S ,

(r + s), (rs), (r∗) respectively denote sets of strings R ∪ S ,RS ,R∗

and are all regular expressions.

Remark. We denote a set of strings expressed by r ∈ RE as L(r).

8

Regular Expression RE

Exmaples. Here’s some examples of the class RE .

• ((0+1)(0+1)(0+1))∗ : Set of strings with length is a multiple of 3.

• (1 + ϵ)(0∗01)∗0∗ : Set of string without 11 in the string.

• (00)∗(11)∗ + 0(00)∗1(11)∗ : Set of string of form 0n1m, 2|n +m.

Definition (Equivalent)

We say some form of the expression A,B is equivalent if its

corresponding sets satisfy L(A) = L(B).

9

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

10

Deterministic Finite Automata DFA

Goal. In this section we define another Language class, called DFA.

Definition (Deterministic Finite Automata)

We denote a language class Deterministic Finite Automata as DFA.

Language M = (Q,Σ, δ, q0,F) is said to be in DFA if it is composed with

1. Q : Finite set of States.

2. Σ : The Alphabet set.

3. δ : Q × Σ → Q : Transfer function that chooses the next state.

4. q0 ∈ Q : The Initial state.

5. F ⊆ Q : The Final states.

11

Deterministic Finite Automata DFA

Remark. Deterministic Finite Automata runs by two extra devices, called

Head and Tape. Tape contains the input string, while Head moves far

left to far right reading the input string.

When the current state is q ∈ Q, and the Head reads the alphabet

a ∈ Σ, the next state is δ(q, a) and the head moves right and reads the

next character in the Tape.

12

Deterministic Finite Automata DFA

Notation. We describe state transfer using ⊢M . When our current

configuration (i.e. current state and unread part of string) is (q, 110) and

if δ(q, 1) = q′ then

(q, 110) ⊢M (q′, 10).

If clear, omit M and use ⊢. 0 or more steps of transfer is denoted as ⊢∗.

Definition

We say a string ω ∈ Σ∗ is accepted by DFA M if DFA M with input ω

ends in the Final state F . We define the language L(M) as the set of

strings that are accepted by M :

L(M) = {ω ∈ Σ∗ : (q0,w) ⊢∗ (f , ϵ), f ∈ F} .

Define a map δ∗ : Q × Σ∗ → Q inductively using δ∗(q, ϵ) = q and

δ∗(q, ωa) = δ(δ∗(q, ω), a) for all ω ∈ Σ∗, a ∈ Σ, q ∈ Q. Then,

L(M) = {ω ∈ Σ∗ : δ∗(q0, ω) ∈ F} .
13

Deterministic Finite Automata DFA

Exmaples. Here’s some examples of the class DFA.

• Set of string without 011 in the string.

q0
ϵ

q1

0

q2

01

q3

011

0

1

1

0

0

1

0,1

14

Deterministic Finite Automata DFA

Exmaples. Here’s some examples of the class DFA.

• Set of string without identical consecutive characters. Σ = {a, b, c}.

q0
ϵ

q1
a

q2

b

q3
c

q4
a

b

c

b

c

a

c

a

b
a

b

c

a,b,c

15

Deterministic Finite Automata DFA

Remark. For the simplicity, we allow δ to be a partial function. In such

case, we append a new state q′ /∈ F so we can extend δ as

δ(q, a) =

{
δ(q, a) if δ(q, a) is defined

q′ if not defined or q = q′

q0
ϵ

q1
a

q2

b

q3
c

a

b

c

b

c

a

c

a

b

We call q′, which was q4 in the previous slide as dead state.

16

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

17

Nondeterministic Finite Automata NFA

Goal. In this section we define another Language class, called NFA.

Definition (Nondeterministic Finite Automata)

We denote a language class Nondeterministic Finite Automata as NFA.

Language M = (Q,Σ,∆, q0,F) is said to be in NFA if it is composed

with

1. Q : Finite set of States.

2. Σ : The Alphabet set.

3. ∆ : Q × (Σ ∪ ϵ) ⇒ Q : Transfer relation, collection of next state(s).

4. q0 ∈ Q : The Initial state.

5. F ⊆ Q : The Final states.

18

Nondeterministic Finite Automata NFA

Remark. Nondeterministic Finite Automata is a generalization of DFA :

• it can have multiple next states or no next state.

• it can transfer with the empty string ϵ.

Remark. We may view ∆ as a function of Q × (Σ ∪ ϵ) → 2Q . In this

sense, extend ∆ as ∆(P, a) = ∪q∈P∆(q, a) for P ∈ 2Q .

Remark. We now define a set of states E (q) for each state q. E (q)

stands for the states reachable from q without reading any string :

E (q) =
⋃

i∈Z≥0

E i (q), E 0(q) = q, E k+1(q) = ∆(E k(q), ϵ).

Remark. While we can define ⊢ similarly, we should note that

transferred result need not be unique.

19

Nondeterministic Finite Automata NFA

Definition

We say a string ω ∈ Σ∗ is accepted by NFA M if NFA M with input ω

ends in the Final state F . We define the language L(M) as the set of

strings that are accepted by M :

L(M) = {ω ∈ Σ∗ : (q0,w) ⊢∗ (f , ϵ), f ∈ F} .

Define a map ∆∗ : Q × Σ∗ → 2Q inductively using ∆∗(q, ϵ) = E (q) and

∆∗(q, ωa) = E (∆(∆∗(q, ω), a)) for all ω ∈ Σ∗, a ∈ Σ, q ∈ Q. Then,

L(M) = {ω ∈ Σ∗ : ∆∗(q0, ω) ∩ F ̸= ∅} .

Remark. We may assume that |F | = 1. If |F | > 1, then append new

state f , use {f } as a Final state, and append ∆(q, ϵ) = f for all q ∈ F .

20

Nondeterministic Finite Automata NFA

Exmaples. Here’s some examples of the class NFA.

• Regular expression (010 + 01)∗.

q0
ϵ

q1

0

q2

01

0

1

0, ϵ

21

Nondeterministic Finite Automata NFA

Exmaples. Here’s some examples of the class DFA.

• Set of string with 1 as the second last character.

q0 q1 q2
1

0,1

0,1

22

Nondeterministic Finite Automata NFA

Remark. It is trivial that DFA is an instance of NFA. Thus, if a language

L is of class DFA, then it is also NFA.

Remark. Generally, it is much simpler to build NFA than DFA.

• Set of string with 1 as the second last character (DFA).

q0 q1

q2 q3

1

0

0 10 1

0
1

23

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

24

DFA = NFA

Goal. In this section we prove DFA = NFA.

Remark. We already know DFA ⊆ NFA.

Idea. The idea of proving NFA ⊆ DFA is to build an equivalent DFA for

a given NFA with each subset of 2Q as a state of DFA.

Theorem

DFA = NFA

To be precise, for a language L, there exists a DFA that accepts strings in

L and denies others, if and if only when there exists a NFA that accepts

strings in L and denies others.

25

DFA = NFA

proof of NFA ⊆ DFA.

Suppose NFA M(Q,Σ,∆, q0,F) is given. We aim to build an equivalent

DFA. Consider DFA machine MD(QD ,Σ, δ, qD ,FD) as :

1. QD = 2Q .

2. δ : 2Q × Σ → 2Q , such that δ(P, a) = E (∆(P, a)) for P ⊆ Q.

3. qD = E (q0).

4. FD = {P : P ∩ F ̸= ∅}.
Then we can easily conclude the proof by showing that a string is

accepted by M if and only when it is accepted by MD . The proof is done

via induction on the length of the input string.

26

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

27

RE = (DFA = NFA)

Goal. In this section we prove that RE is equivalent to finite automata.

Idea. We first prove that RE ⊆ NFA and then prove DFA ⊆ RE .

Theorem

RE = DFA = NFA

To be precise, for a language L, it is describable as Regular expression if

and only if when there exists a DFA (of NFA) that accepts strings in L

and denies others.

Idea. For RE ⊆ NFA, we will build NFA.

Idea. For DFA ⊆ RE , we will construct RE .

28

RE = (DFA = NFA)

proof of RE ⊆ NFA.

Recall that RE is defined inductively. We construct NFA with singleton

Final state corresponding to RE also inductively.

1. First, ∅, ϵ, a ∈ RE for a ∈ Σ. Corresponding NFA are :

ϵ a

2. r , s ∈ RE ⇒ (r + s), (rs), (r∗) ∈ RE :

Assume r , s have corresponding NFA : R,S :

R S

29

RE = (DFA = NFA)

proof of RE ⊆ NFA, continued.

Then NFA for (r + s) is :

ϵ

ϵϵ

S

ϵ

R

NFA for (r + s)

30

RE = (DFA = NFA)

proof of RE ⊆ NFA, continued.

NFA for (rs) is :

ϵ SR

NFA for (rs)

31

RE = (DFA = NFA)

proof of RE ⊆ NFA, continued.

NFA for (r∗) is :

ϵ ϵ

ϵ

ϵ

R

NFA for (r∗)

32

RE = (DFA = NFA)

Now let’s prove DFA ⊆ RE . The idea is to categorize the strings via the

states it passes.

proof of DFA ⊆ RE .

Let’s write the given DFA M as :

M = (Q,Σ, δ, q1,F) , Q = {q1, q2, · · · , qn} .

Let’s define a set of strings Rk
ij as

Rk
ij =

{
ω ∈ Σ∗ : when (qi , ω) ⊢∗ (qm, ω

′),

{
m ≤ k if |ω′| > 0

m = j if ω′ = ϵ

}
,

strings which transfers qi to qj without passing any states with index

number larger than k .

33

RE = (DFA = NFA)

proof of DFA ⊆ RE , continued.

For the remark,

L(M) =
⋃
qj∈F

Rn
1j .

The set Rk
ij could be calculated recursively as follows :

R0
ij =

{
{a ∈ Σ : δ(qi , a) = qj} if i ̸= j

{a ∈ Σ : δ(qi , a) = qi} ∪ ϵ if i = j

Rk
ij = Rk−1

ij ∪ Rk−1
ik (Rk−1

kk) ∗ Rk−1
kj .

34

RE = (DFA = NFA)

proof of DFA ⊆ RE , continued.

In other words, each Rk
ij are a RE language rkij defined recursively as :

r0ij =

{
{a ∈ Σ : δ(qi , a) = qj} if i ̸= j

{a ∈ Σ : δ(qi , a) = qi}+ ϵ if i = j

rkij = rk−1
ij + (rk−1

ik (rk−1
kk) ∗ rk−1

kj).

Thus, L(M) is RE language since

L(M) =
∑
qj∈F

rn1j .

35

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

36

Further topics

Theorem (Pump theorem)

Suppose L is a RE language. Then, there exist an integer t > 0 such

that, for any ω ∈ L with |ω| ≥ t, it is possible to decompose ω as xyz

that satisfies :

1. |xy | ≤ t and |y | ≥ 1,

2. For all i ≥ 0, xy iz ∈ L.

Idea. Find equivalent DFA and define t as the number of states.

Remark. The inverse does not hold.

37

Further topics

proof of Pump theorem.

Now we can consider equivalent DFA M = (Q,Σ, δ, q0,F). Choose the

number t as |Q|, which only depends on the language L. Name the

characters of the input string as ω = a1a2 · · · cn where |ω| = n ≥ t.

Label the state M stays as it reads the input as

qi = δ∗(q0, a1a2 · · · ai), 1 ≤ i ≤ n.

With the pigeon’s hole principle, among q0, q1, · · · , qt there exists

0 ≤ j < k ≤ t such that qj = qk .

38

Further topics

proof of Pump theorem, continued.

q0 qj = qk qn

y = aj+1 · · · ak

x = a1 · · · aj z = ak+1 · · · an

Define x , y , z as the figure above. Then, |xy | = k ≤ t and

|y | = k − j ≥ 1. Also, from

qj = δ∗(qj , y),

we can say qj = δ∗(qj , y
∗). Hence, δ∗(q0, xy

iz) = qn ∈ F .

∴ xy iz ∈ L, ∀i ≥ 0.

39

Further topics

Examples of languages not in RE

• {0n1n : n ≥ 0}.
• {uu : u ∈ Σ∗}. (|Σ| ≥ 2)

•
{
an

2

: n ≥ 0
}
.

• {0m1n : m ̸= n}.

Remark. What is RE or FA in practical issue? We can see that RE are

not capable of recording a long term memory, while short term memory

of bounded length is possible. In the example, It was not possible to

duplicate a sequence after it is once written, while it is possible to check

the character written right before.

40

Further topics

Remark. Due to such characteristics, FAs are commonly refered as the

computer with out a memory device. We use them even in real life, such

as a door lock.

q0 q1 q2 q3 q4

not a1

a1 a2

a1

a3

a1

otherwise

#

41

	Language
	Regular Expression RE
	Deterministic Finite Automata DFA
	Nondeterministic Finite Automata NFA
	DFA=NFA
	RE=(DFA=NFA)
	Further topics

