Seminar : Automata Theory

Lec 1 : Equivalency of Finite Automata and Regular expression

Jinhee Paeng Aug 22, 2023

Seoul National University

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Definition (Alphabet)

Alphabet is a finite set of characters. We denote Σ as a alphabet set.

Example. Following sets are examples of the alphabet.

- {0,1}
- $\{a, b, c, \cdots, z\}$

Definition (String)

String generated by Σ is a finite length word that uses characters in Σ . We denote the length of the string w as |w|. We say a string is an empty string if it is of length zero. We denote the empty string as ϵ .

Language

Definition (Concatenation)

When the two strings x, y are given, we denote a concatenation of as xy. When the two sets of strings X, Y are given, we define a concatenation of sets X, Y as

$$XY = \{xy : x \in X, y \in Y\}.$$

Definition (Kleene product)

For a set of strings S, we denote a set S* as a Kleene product of the set S : $$$_{\infty}$$

$$S^* = \bigcup_{k=0} S^k, \quad S^{k+1} = S^k S, \quad S^0 = \{\epsilon\}$$

Remark. Note that the set of all strings generated by the set Σ is Σ^* . For example, when $\Sigma = \{0, 1\}$, then

 $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \}.$

Definition (Language)

- We say a set L is a Language if $L \subset \Sigma^*$.
- We call a set of Languages as Language Class.

Remark. Since Language is a set of strings, we can define concatenation and Kleene product identically on Languages.

Remark. Definition of *Language* coincides with the general notion of languages such as English, Korean, C, Python.

Table of Contents

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Regular Expression RE

Goal. In this section we define the first useful Language class, called RE.

Definition (Regular Expression)

We denote a language class *Regular Expression* as *RE*. Language class *RE* is defined inductively using following rules.

- 1. $\emptyset \in RE$: An empty set \emptyset is regular expression.
- 2. $\epsilon \in RE$: A singleton set $\epsilon = \{\epsilon\}$ is regular expression.
- a ∈ Σ ⇒ a ∈ RE : A singleton set a = {a} is regular expression for every alphabet a ∈ Σ.
- 4. r, s ∈ RE ⇒ (r + s), (rs), (r*) ∈ RE : When r, s are regular expression and equivalent to the set of strings R, S, (r + s), (rs), (r*) respectively denote sets of strings R ∪ S, RS, R* and are all regular expressions.

Remark. We denote a set of strings expressed by $r \in RE$ as L(r).

Exmaples. Here's some examples of the class *RE*.

- $((0+1)(0+1)(0+1))^*$: Set of strings with length is a multiple of 3.
- $(1+\epsilon)(0^*01)^*0^*$: Set of string without 11 in the string.
- $(00)^*(11)^* + 0(00)^*1(11)^*$: Set of string of form $0^n 1^m$, 2|n + m.

Definition (Equivalent)

We say some form of the expression A, B is equivalent if its corresponding sets satisfy L(A) = L(B).

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

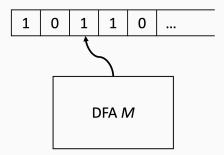
Goal. In this section we define another Language class, called DFA.

Definition (Deterministic Finite Automata)

We denote a language class *Deterministic Finite Automata* as *DFA*. Language $M = (Q, \Sigma, \delta, q_0, F)$ is said to be in *DFA* if it is composed with

- 1. Q: Finite set of *States*.
- 2. Σ : The *Alphabet* set.
- 3. $\delta: Q \times \Sigma \rightarrow Q$: Transfer function that chooses the next state.
- 4. $q_0 \in Q$: The *Initial state*.
- 5. $F \subseteq Q$: The Final states.

Remark. Deterministic Finite Automata runs by two extra devices, called *Head* and *Tape*. *Tape* contains the input string, while *Head* moves far left to far right reading the input string.



When the current state is $q \in Q$, and the *Head* reads the alphabet $a \in \Sigma$, the next state is $\delta(q, a)$ and the head moves right and reads the next character in the *Tape*.

Notation. We describe state transfer using \vdash_M . When our current configuration (i.e. current state and unread part of string) is (q, 110) and if $\delta(q, 1) = q'$ then

 $(q, 110) \vdash_M (q', 10).$

If clear, omit M and use \vdash . 0 or more steps of transfer is denoted as \vdash^* .

Definition

We say a string $\omega \in \Sigma^*$ is *accepted* by DFA *M* if DFA *M* with input ω ends in the *Final state F*. We define the language L(M) as the set of strings that are accepted by *M* :

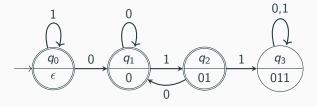
$$L(M) = \{\omega \in \Sigma^* : (q_0, w) \vdash^* (f, \epsilon), f \in F\}.$$

Define a map $\delta^* : Q \times \Sigma^* \to Q$ inductively using $\delta^*(q, \epsilon) = q$ and $\delta^*(q, \omega a) = \delta(\delta^*(q, \omega), a)$ for all $\omega \in \Sigma^*, a \in \Sigma, q \in Q$. Then,

 $L(M) = \{\omega \in \Sigma^* : \delta^*(q_0, \omega) \in F\}.$

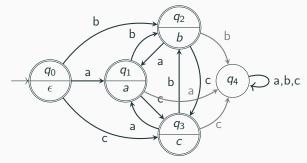
Exmaples. Here's some examples of the class *DFA*.

• Set of string without 011 in the string.



Exmaples. Here's some examples of the class *DFA*.

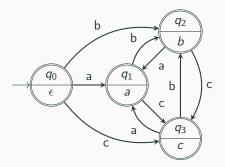
• Set of string without identical consecutive characters. $\Sigma = \{a, b, c\}$.



Deterministic Finite Automata DFA

Remark. For the simplicity, we allow δ to be a *partial function*. In such case, we append a new state $q' \notin F$ so we can extend δ as

$$\delta(q, a) = \begin{cases} \delta(q, a) & \text{if } \delta(q, a) \text{ is defined} \\ q' & \text{if not defined or } q = q \end{cases}$$



We call q', which was q_4 in the previous slide as *dead state*.

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Goal. In this section we define another Language class, called NFA.

Definition (Nondeterministic Finite Automata)

We denote a language class *Nondeterministic Finite Automata* as *NFA*. Language $M = (Q, \Sigma, \Delta, q_0, F)$ is said to be in *NFA* if it is composed with

- 1. Q: Finite set of *States*.
- 2. Σ : The *Alphabet* set.
- 3. $\Delta: Q \times (\Sigma \cup \epsilon) \Rightarrow Q$: *Transfer relation*, collection of next state(s).
- 4. $q_0 \in Q$: The Initial state.
- 5. $F \subseteq Q$: The Final states.

Remark. Nondeterministic Finite Automata is a generalization of DFA :

- it can have multiple next states or no next state.
- it can transfer with the empty string ϵ .

Remark. We may view Δ as a function of $Q \times (\Sigma \cup \epsilon) \rightarrow 2^Q$. In this sense, extend Δ as $\Delta(P, a) = \bigcup_{q \in P} \Delta(q, a)$ for $P \in 2^Q$.

Remark. We now define a set of states E(q) for each state q. E(q) stands for the states reachable from q without reading any string :

$$E(q) = igcup_{i\in\mathbb{Z}_{\geq 0}} E^i(q), \quad E^0(q) = q, \quad E^{k+1}(q) = \Delta(E^k(q),\epsilon).$$

Remark. While we can define \vdash similarly, we should note that transferred result need not be unique.

Definition

We say a string $\omega \in \Sigma^*$ is *accepted* by NFA *M* if NFA *M* with input ω ends in the *Final state F*. We define the language L(M) as the set of strings that are accepted by *M* :

$$L(M) = \{\omega \in \Sigma^* : (q_0, w) \vdash^* (f, \epsilon), f \in F\}$$
 .

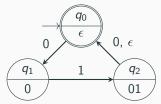
Define a map $\Delta^* : Q \times \Sigma^* \to 2^Q$ inductively using $\Delta^*(q, \epsilon) = E(q)$ and $\Delta^*(q, \omega a) = E(\Delta(\Delta^*(q, \omega), a))$ for all $\omega \in \Sigma^*, a \in \Sigma, q \in Q$. Then,

$$L(M) = \{\omega \in \Sigma^* : \Delta^*(q_0, \omega) \cap F \neq \emptyset\}.$$

Remark. We may assume that |F| = 1. If |F| > 1, then append new state f, use $\{f\}$ as a *Final state*, and append $\Delta(q, \epsilon) = f$ for all $q \in F$.

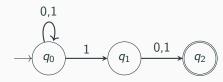
Exmaples. Here's some examples of the class *NFA*.

• Regular expression $(010 + 01)^*$.



Exmaples. Here's some examples of the class *DFA*.

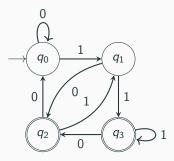
• Set of string with 1 as the second last character.



Remark. It is trivial that *DFA* is an instance of *NFA*. Thus, if a language *L* is of class *DFA*, then it is also *NFA*.

Remark. Generally, it is much simpler to build NFA than DFA.

• Set of string with 1 as the second last character (*DFA*).



Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Goal. In this section we prove DFA = NFA.

Remark. We already know $DFA \subseteq NFA$.

Idea. The idea of proving $NFA \subseteq DFA$ is to build an equivalent DFA for a given NFA with each subset of 2^Q as a state of DFA.

Theorem

DFA = NFA

To be precise, for a language L, there exists a DFA that accepts strings in L and denies others, if and if only when there exists a NFA that accepts strings in L and denies others.

proof of $NFA \subseteq DFA$.

Suppose NFA $M(Q, \Sigma, \Delta, q_0, F)$ is given. We aim to build an equivalent DFA. Consider DFA machine $M_D(Q_D, \Sigma, \delta, q_D, F_D)$ as :

1.
$$Q_D = 2^Q$$

- 2. $\delta: 2^Q \times \Sigma \to 2^Q$, such that $\delta(P, a) = E(\Delta(P, a))$ for $P \subseteq Q$.
- 3. $q_D = E(q_0)$.
- 4. $F_D = \{P : P \cap F \neq \emptyset\}.$

Then we can easily conclude the proof by showing that a string is accepted by M if and only when it is accepted by M_D . The proof is done via induction on the length of the input string.

Language

Regular Expression RE

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Goal. In this section we prove that RE is equivalent to finite automata. **Idea.** We first prove that $RE \subseteq NFA$ and then prove $DFA \subseteq RE$.

Theorem

RE = DFA = NFA

To be precise, for a language L, it is describable as Regular expression if and only if when there exists a DFA (of NFA) that accepts strings in L and denies others.

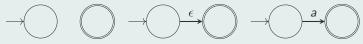
Idea. For $RE \subseteq NFA$, we will build NFA.

Idea. For $DFA \subseteq RE$, we will construct RE.

proof of $RE \subseteq NFA$.

Recall that *RE* is defined inductively. We construct *NFA* with *singleton Final state* corresponding to *RE* also inductively.

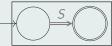
1. First, $\emptyset, \epsilon, a \in RE$ for $a \in \Sigma$. Corresponding *NFA* are :



2. $r, s \in RE \Rightarrow (r + s), (rs), (r^*) \in RE$:

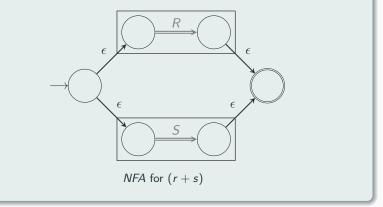
Assume r, s have corresponding NFA : R, S :





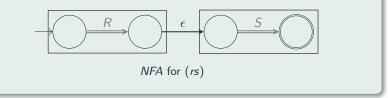
proof of $RE \subseteq NFA$, continued.

Then NFA for (r + s) is :



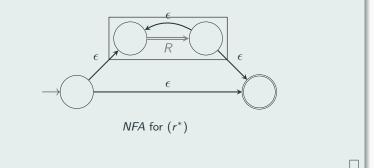
proof of $RE \subseteq NFA$, continued.

NFA for (rs) is :



proof of $RE \subseteq NFA$, continued.

NFA for (r^*) is :



Now let's prove $DFA \subseteq RE$. The idea is to categorize the strings via the states it passes.

proof of $DFA \subseteq RE$.

Let's write the given DFA M as :

$$M = (Q, \Sigma, \delta, q_1, F), \quad Q = \{q_1, q_2, \cdots, q_n\}.$$

Let's define a set of strings R_{ij}^k as

$$R_{ij}^k = \left\{ \omega \in \Sigma^* : ext{when } (q_i, \omega) \vdash^* (q_m, \omega'), \ \left\{ egin{matrix} m \leq k & ext{if } |\omega'| > 0 \ m = j & ext{if } \omega' = \epsilon \ \end{pmatrix}
ight\},$$

strings which transfers q_i to q_j without passing any states with index number larger than k.

proof of $DFA \subseteq RE$, continued.

For the remark,

$$L(M) = \bigcup_{q_j \in F} R_{1j}^n.$$

The set R_{ij}^k could be calculated recursively as follows :

$$R_{ij}^{0} = \begin{cases} \{a \in \Sigma : \delta(q_i, a) = q_j\} & \text{if } i \neq j \\ \{a \in \Sigma : \delta(q_i, a) = q_i\} \cup \epsilon & \text{if } i = j \end{cases}$$
$$R_{ij}^{k} = R_{ij}^{k-1} \cup R_{ik}^{k-1}(R_{kk}^{k-1}) * R_{kj}^{k-1}.$$

proof of $DFA \subseteq RE$, continued.

In other words, each R_{ij}^k are a RE language r_{ij}^k defined recursively as :

$$r_{ij}^{0} = \begin{cases} \{a \in \Sigma : \delta(q_{i}, a) = q_{j}\} & \text{if } i \neq j \\ \{a \in \Sigma : \delta(q_{i}, a) = q_{i}\} + \epsilon & \text{if } i = j \end{cases}$$
$$r_{ij}^{k} = r_{ij}^{k-1} + (r_{ik}^{k-1}(r_{kk}^{k-1}) * r_{kj}^{k-1}).$$

Thus, L(M) is RE language since

$$L(M) = \sum_{q_j \in F} r_{1j}^n.$$

Language

```
Regular Expression RE
```

Deterministic Finite Automata DFA

Nondeterministic Finite Automata NFA

DFA = NFA

RE = (DFA = NFA)

Further topics

Theorem (Pump theorem)

Suppose L is a RE language. Then, there exist an integer t > 0 such that, for any $\omega \in L$ with $|\omega| \ge t$, it is possible to decompose ω as xyz that satisfies :

- 1. $|xy| \le t \text{ and } |y| \ge 1$,
- 2. For all $i \ge 0$, $xy^i z \in L$.

Idea. Find equivalent *DFA* and define *t* as the number of states. **Remark.** The inverse does not hold.

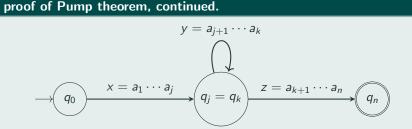
proof of Pump theorem.

Now we can consider equivalent *DFA* $M = (Q, \Sigma, \delta, q_0, F)$. Choose the number *t* as |Q|, which only depends on the language *L*. Name the characters of the input string as $\omega = a_1 a_2 \cdots c_n$ where $|\omega| = n \ge t$. Label the state *M* stays as it reads the input as

$$q_i = \delta^*(q_0, a_1a_2\cdots a_i), \quad 1 \le i \le n.$$

With the pigeon's hole principle, among q_0, q_1, \dots, q_t there exists $0 \le j < k \le t$ such that $q_j = q_k$.

Further topics



Define x, y, z as the figure above. Then, $|xy| = k \le t$ and $|y| = k - j \ge 1$. Also, from

$$q_j = \delta^*(q_j, y),$$

we can say $q_j = \delta^*(q_j, y^*)$. Hence, $\delta^*(q_0, xy^i z) = q_n \in F$. $\therefore xy^i z \in L, \quad \forall i \ge 0.$

Examples of languages not in RE

- $\{0^n 1^n : n \ge 0\}.$
- { $uu: u \in \Sigma^*$ }. ($|\Sigma| \ge 2$)
- $\left\{a^{n^2}:n\geq 0\right\}.$
- $\{0^m 1^n : m \neq n\}.$

Remark. What is *RE* or *FA* in practical issue? We can see that *RE* are not capable of recording a long term memory, while short term memory of bounded length is possible. In the example, It was not possible to duplicate a sequence after it is once written, while it is possible to check the character written right before.

Further topics

Remark. Due to such characteristics, *FA*s are commonly refered as the computer with out a memory device. We use them even in real life, such as a door lock.

